Bemerkung: Die folgende Schrift wurde auf die Bitte von Prof. Guran (Russland) verfasst und zur Publikation übergeben. Die Publikation des geplanten Buches scheint aber nicht zustande gekommen zu sein. FP 2016

Modeling and Implementation of Complex Engineering Systems

F. Pichler
Johannes Kepler University Linz

Systems Theory and Information Technology

A-4040 Linz

pichler@cast.uni-linz.ac.at
1. Introduction

2. Instrumenting the Design Process

3. General Systems Methodology

4. Multi Level Modeling

5. Design of Micromachines

6. Design of Intelligent Peripheral System Components

7. Conclusion

References

1. Introduction

Many engineering systems of today – to be designed or already existing – have properties of qualitative or quantitative kind which are considered as complex. The measure of complexity may be defined by the number of components of the system, or, to give another example by the kind and degree of the coupling. Another case of complexity is given if the system or a component has a function which is difficult to realize (for example difficult to compute by an algorithm). The design of such systems, their proper documentation for testing, operation and maintenance needs special efforts and suitable methods and tools have to be applied.

In this chapter we will discuss the design of complex engineering systems and point to topics which concern a possible application of Systems Theories of different kind. This seems today of specific importance to contrast the believe that existing best praxis examples and trial and error approaches to design such systems are sufficient. We emphasize the fact that there is the need for scientific methods and mathematical instruments as tools to support the design of complex engineering systems. Two specific examples of modern design tasks, the design of micromachines and the design of intelligent peripheral systems components support this view.

2. Instrumenting the Design Process

2.1 Design Process

The design of a complex engineering systems is realized in different steps, the different phases of design. It starts with the phase “problem definition” where the functional and non-functional requirements are determined. Very often the result of this phase is reached by a detailed conversation between the customer (which follows his functional goals) and the designer (which has expert knowledge of non-functional requirements to realize a feasible solution). The result of the phase “problem definition” is a document which states the reached agreement in a semi-formal way, such that the necessary precision for the avoidance of repudiation is given.

The second step in our scheme is the phase “model construction”. Based on the problem definition a suitable model has to be built. Usually this phase needs several “rounds”. It starts with the determination of an architectural model on high level of abstraction and finishes with an architectural description, which uses as much as possible components which are already available in an existing library.

The model which is reached in the model construction phase has to fulfil the requirements as stated in the specified “problem definition” of phase 1.

However it is “open” in the sense, such that it can be tuned by existing parameters to a model which satisfies optimal the overall goals.

This tuning process is the task of phase 3, the phase of “model analysis”. It uses deductive methods (as available from theoretical insights which exist for the model) or inductive methods (realized by simulation experiments) to find an optimal solution for the model.

The phase 4, the phase of “implementation” prepares all the necessary specific tasks which have to be performed to manufacture the wanted system. Again, the result of this phase has to validated against the requirements of the problem definition. This final step of the design process concerns the description of the designed model in practical terms such that the real manufacturing can take place. The result is the solution of the problem which is solved by the design process.

Figure 1 gives a block diagram which shows the different steps of the design process.

[image: image13.wmf]
Figure 1: Design-phases

2.2 Instrumental Support

The realization of the different phases of a design process dealing with a complex engineering situation has to be supported by computerized tools. This are the usual CAD and CAM tools which exist for the specific engineering domains.

In many practical cases the CAD/CAM tools are not open to such an extent, such that the designer can apply additional available methods for model construction or model analysis. In this case mathematical methods which are provided by systems theory have to be implemented as tools (CAST tools; CAST stands for Computer Aided Systems Theory) and have to be integrated to the existing CAD/CAM tools to give an instrumental support to the Designer.

However, in currently available design tools, e.g. for microelectronics design, some mathematical methods have already been incorporated. Additional need for CAST tools exists there for special design tasks, such as for example, for ASIC design (ASIC=Application Specific Integrated Circuit). Another growing field where such advanced CAD/CAM tools are required is the field of micromachines (Micro Electro Mechanical Systems = MEMS). In this still new domain of design it will be in the future a necessity to have CAST/CAD/CAM tools available, to give the proper instrumental support to the designer.

After our general introduction into the problem area of designing complex engineering systems putting an emphasis for the need of additional instrumental support to existing CAD/CAM tools for the designer by CAST tools, we will elaborate some ideas and concepts concerning systems theory.

3. General Systems Methodology

The founders of the field of “General Systems Theory” (we have to mention here the Austrian biologist Ludwig von Bertalanffy) had the goal to discover for complex systems general laws which are valid on a high abstract level of description. Such general systems laws should give support for the solution of design or analysis tasks on high level of model description.

Although the expectations and the promises of General Systems Theory were very high in the beginning, today the field has no top priority in academic education any more. However, the philosophy which the founders of General Systems Theory have developed is still of actuality. To get flavour of it we want to cite some of the original writings about it. In his fundamental book (1(Ludwig von Bertalanffy writes:

It seems, therefore, that a general theory of systems would be a useful tool providing, on the one hand, models that can be used in, and transferred to, different fields, and safeguarding, on the other hand, from vague analogies which often have marred the progress in these fields.

There is, however, another and even more important aspect of general system theory. It can be paraphrased by a felicitous formulation due to the well-known mathematician and founder of information theory Warren Weaver. Classical physics, Weaver said, was highly successful in developing the theory of unorganised complexity. Thus, for example, the behavior oa a gas is the result of the unorganised and individually untraceable movements of innumerable molecules; as a whole it is governed by the laws of thermodynamics. The theory of unorganised complexity is ultimately rooted in the laws of chance and probability and in the second law of thermodynamics. In contrast, the fundamental problem today is that of organized complexity. Concepts like those of organization, wholeness, directiveness, teleology, and differentiation are alien to conventional physics. However, they pop up everywhere in the biological, behavioural and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups. Thus a basic problem posed to modern science is a general theory of organization. General system theory is, in principle, capable of giving exact definitions for such concepts and, in suitable cases, of putting them to quantitative analysis.

Mihailo Mesarovic, a well known supporter of General Systems Theory defines the field in his book (2(as follows:

General systems theory deals with the most fundamental concepts and aspects of systems. Many theories dealing with more specific types of systems (e.g., dynamical systems, automata, control systems, game-theoretic systems, among many others) have been under development for quite some time. General systems theory is concerned with the basic issues common to all of these specialized treatments. Also, for truly complex phenomena, such as those found predominantly in the social and biological sciences, the specialized descriptions used in classical theories (which are based on special mathematical structures such as differential or difference equations, numerical or abstract algebras, etc.) do not adequately and properly represent the actual events. Either because of this inadequate match between the events and types of descriptions available or because of the pure lack of knowledge, for many truly complex problems one can give only the most general statements, which are qualitative and too often even only verbal. General systems theory is aimed at providing a description and explanation for such complex phenomena.

From this author the following definition has been given (3(:

General Systems Theory is a part of Systems Theory which deals with general problems concerning the organisation, the structure and the dynamics of systems. Its aim is to offer instruments for practical use for hierarchical approaches in design and analysis. However, until today General Systems Theory was not able to prove its scientific validity in such tasks and its acceptance in the scientific community is still doubtful. It is important to establish general systems concepts for the purpose of modelling of systems, typically such from the field of information technology on high levels of abstraction. Then general systems theory could be an important tool to give instrumental support for the design and the analysis of specifications for the user level and for the architectural level of complex systems.

In the following paragraph we prepare the conceptual framework to see how results from General Systems Theory can be used in design and analysis of models.

4. Multi Level Modeling

The document which results from the phase of “problem definition” in the design process of a complex engineering system states the functional and non-functional requirements of different kind. Some of it might be very general and non-technical (e.g. determining the required social, cultural or legalistic properties), others will refer to specific technical or physical properties which are required.

It is not possible to construct at once a model which fulfils the set of requirements of all such different kind. It is advisable to start the model construction on a high level of description and to refine the model top down until “feasible” components are reached. Feasible means in our context that we know how to implement such components by well known library elements. The result of such a modelling approach is a model with a multi-layer architecture (multi-layer model). The top layer of such a model deals with the realization of the most general but basic requirements, the layers below give support to the realization of the fulfilment of requirements of the layers above and realize in addition requirements which address directly the models of a specific layer.

The construction of any model of a complex engineering system with a multi-layer architecture is naturally a part of engineering art.

It needs besides of engineering experience (best praxis) the creation of inventions, finding components of new kind to realize specific requirements. However, the activity of inventing can get instrumental support by decomposition methods (of deductive or inductive kind) and associated simulation experiments which enable to explore different existing construction ideas.

General Systems Theory can provide in this context the proper formal methods and tools for the construction of models on high layers.

To conclude we show in Figure 2 by a block-diagram the multi-layer architecture of a complex engineering system. The systems components which have shadows fulfil purely operative task (contributing to the fulfilment of functional requirements), all other have in addition also dispositive tasks by coordinating between the associate components of the layer below and the layer above.

[image: image14.wmf]
Figure 2: Multi-layer architecture of a complex engineering system

5. Design of Micromachines

5.1 Introduction

Advances in Microelectronic technology, especially in sensor- and actuator technology, have resulted in the development of integrated circuits which, in addition to microelectronics and transducers, contain mechanical and optical components. Consequently it has become possible to develop complex systems by coupling these new components with conventional microelectronic components and systems. The construction of these systems necessitates changes in the design and manufacturing process. We discuss here necessary improvements of the design process, to meet the challenges of this new field of micromachines (i.e., micro-electromechanical systems, micromechatronics).

In this context, we are primarily interested in the kinds of models which can be used to develop the building blocks and couplings. Here, formal mathematical constructions for model-building and model-transformations deserve our specific interest. With this goal in mind we will consider topics of applied mathematics, specifically those from mathematical systems theory, which can be useful in the design of micromachines. As usual, we can expect that the introduction of the newly developed micromachine-technology will require the development of new theories in applied mathematics and mathematical systems theory. Although existing methods can be adapted to meet the modeling requirements of micromachine design, it will be necessary, as experience of the past with microelectronics confirms, to develop new formal modeling concepts and related methods. However, we can expect to find a basis in the rich source of the already existing theory in pure mathematics. To discover which existing parts of mathematics are appropriate to a given task, it requires a certain practical familiarity in applied mathematics and systems theory; a fact which is often neglected by pure mathematicians who often consider such question as “trivial”.

5.2 The Micromachine-Modeling Process

Modeling of a desired micromachine begins with defining the “requirements” which have to be fulfilled according to the clients point of view. Again we distinguish between two types of requirements: “functional” and “nonfunctional”. Functional requirements are generally defined in engineering as the properties of a system which guarantee a desired function. In the case of a micromachine (MM) they define the properties which are expected to contribute to a proper embedding of it into the overall system (i.e., the environment of the MM). Very often they define an input/output relation (I/O relation) in the form of a “black box” which has to be realized by the final MM. Nonfunctional requirements, on the other hand, define conditions which have to be met by the micromachine. Usually they concern domain specific properties (e.g., properties which express economic or physical features). Nonfunctional requirements are often expressed formally by restricting the validity of specific variables to certain domains. Contrary to functional requirements, the evaluation of nonfunctional requirements often requires detailed knowledge of the domain-specific model.

Requirements, as expressed by the client, are very often formulated in natural language. In order to incorporate these requirements into Computer Aided Design tools (CAD tools) it is necessary to translate them into a formal form written in some given programming language. We call the first formal model for the micromachine MM in which the requirements are described in a programming language R, MMR. The next step in the design of MM is the most difficult one. It is the construction of a feasible microsystem architectural model (MMA) for the given MMR requirement model, which fulfills all of it’s requirements. The step from MMR to MMA is usually decomposed into several steps, where each individual step consists of a refinement of the architecture. Starting from MMR we develop different architectural models: MMA1,...MMAn-1, MMAn = MMA, where MMA i+1 is a refinement of MMA i (i=1,2,...,n-1). These models form a hierarchical model of height n. While for all the architecture models MMA1 to MMAn the fulfillment of the given functional requirements is mandatory, only when reaching MMAn = MMA it has to be assured that in additional the nonfunctional requirements are met. MMA consists of components and the couplings (i.e., interfaces) between them and known instance-models (e.g., models which allow the evaluation of the nonfunctional requirements and which assure physical reliability).

Considering the current state of the art in micromachine design, we must confess that our picture of stepwise top-down design of the architecture is too ideal. In many practical cases of micromachine design, modeling the architecture above the physical level is not possible. The reason for this is partly given by the fact that the design of complex micromachines in a systematic way is rather seldomly done. Such systems are often still invented by a creative designer using his intuition and lack then a documentation of the design steps “between”. Another reason is that models of components, and subsystems of coupled components, are often not available in a “stable sense” (i.e., with fixed material properties). It is still necessary to design “in the material” and not “on the material” to use an expression coined by Hugo de Man (4(. In most cases of micromachine design, the properties of the material have to be considered as unknown, and will only become fixed during the design activity.

For these reasons, constructing MMA from MMR is difficult, since the fulfillment of the requirements only occurs when models which specify exactly the material properties are reached. However, given the rate of progress in micromachine development, we can expect in the future that more and more micromachine components and building blocks will be available; allowing for “requirement driven”, top down design as we have sketched above. With the specification of MMA we have finished the design phase and can set forth on the next phase, the phase of implementation, in which we convert the “blue print” of MMA into an engineering product.

5.3 Formal Micromachine Architectural Models

According to the goal of this paragraph, we will now investigate possible formal modeling means for the design of MMA. Principally, since microsystems are generally very rich with respect to their physical structures, their mathematical models potentially can make use of many kind of mathematical structure. However, since we are modeling within a systems-theoretical framework, specific mathematical theories will be of special interest. The question of which mathematical models are suitable for the construction of MMA starting from MMR is equivalent to the question of which kind of homomorphic constructions can be developed to model the components and couplings of the sequence MMA1, MMA2, ... of architectural models which leads to MMA.

Differential equation systems are the preferred mathematical tool for creating “highly structured models” of the components of MMA. In microelectronics, systems of ordinary differential equations are applicable for modeling many kinds of electronics, while partial differential equation systems are needed for modelling in micromechanics and in microoptics. These methods are also useful for certain instance models, where nonfunctional requirements which concern properties in space and time have to be evaluated. Regarding the type of models to be used for MMR, we might assume that their formal nature will be specified by graphs, relations, functions, etc. In conclusion we can assume that the model-types for MMA1,...MMAn-1 will be some kind of homomorphic images of differential equation systems which relate to each other and which allow certain nonfunctional requirements to be evaluated. For MMA1 it is required that it can be imbedded mathematically into MMR such that the fulfillment of the functional requirements can be proven.

In the case of microelectronics, where the art of modeling the design process has reached a mature stage, the use of homomorphic images in this way is well known. For digital microelectronics we mention as examples of classes of model types:

· Boolean functions,

· binary sequential switching circuits,

· finite state machines,

· extended finite state machines,

· petri nets.

For analog microelectronics, the following examples of model types are used as the building blocks of information transmission systems and transducers:

· 2-port circuits,

· multi-port circuits,

· transfer functions,

· frequency filters and equalizers,

· models for modulation devices,

· A/D transducers.

Similarly we might assume that such examples can also be found for the field of micromechanics and microoptics. In micromechanics we can consider primitive machines like the inclined plane, crank, wedge, and screw and derived machine elements such as transmissions, gears or ball-bearing as candidates for defining such homomorphic images.

At the current stage of research and development of micromachines, we are not able to completely describe the kinds of formal models in terms of mathematical systems theory which will be required. We have to await further practical results in micromachine design. As soon as certain building blocks of micromachines become stable, in the sense that they can be considered as reusable parts, it will make sense to formalize them and prepare a related theoretical framework, so that they can be identified as homomorphic images of more structurally refined formal models. In the case of microelectronics the theory of automata is an example of where such an empirical approach in the development of mathematical systems theory has taken place. This development started in the early 1950’s when digital electronic circuits with memory first became practical and a functional description of the behavior of such circuits was needed. Another example is given by the development of the use of complex numbers in electrical engineering by Charles Proteus Steinmetz in connection with the introduction of alternating current for electrical power systems in the 1880’s. Both examples led to fields of mathematical systems theory, namely to the theory of finite automata and to the frequency theory of electrical networks, which are both important means in formal modeling.

However, for formally modeling micromachines, we have to consider in particular a topic of mathematical systems theory which has already received careful mathematical treatment. It is the field of “dynamical systems” as introduced many years ago in pure mathematics by the famous monograph of Birkhoff (5(. Dynamical systems can generally be considered as homomorphic images of systems of solutions of differential equations. The existing theory consists of a wide range of topics drawn from the mathematical fields of algebra, topology, differential geometry and functional analysis. At this point we want to express the hope that applied mathematicians and mathematical systems theorists will in the future pay strong attention in research to the field of dynamical systems in building a formal framework for modeling micromachine at the different architectural levels which are needed in the top down design process.

In the following sections we will try to outline the general approach for such a research orientation.

5.4 Systems-Morphisms

A fundamental concept to relate formal models from different architectural levels is the concept of systems-morphisms. A systems-morphism maps a formal model of a certain type to a more abstract model usually of the same type. By definition it is required that this mapping preserve certain structural properties of the model. As a simple example consider the mapping of a finite automaton M=(A,B,Q,(,() onto its quotient M/~ by the map h=(h1,h2,h3) where M/~=h(M)=(A,B,h1(Q),h2((),h3(()). The preservation of the structure of M by h is assured by commutativity as shown in the following diagram.

[image: image15.wmf]
Similarly we might define a systems morphism h=(h1,h2) for a function f:X(Y using the following commutative diagram.

[image: image16.wmf]
It is known that any equivalence relation (of X allows the construction of a morphism of this kind. In the case of the “natural morphism” of h(n) for f, the equivalence relation n on X is given by xn(: (f(x)=f(() for all (,x(X. In this case we have h1(X)=X/n, h2(Y)=Y and h3(f) is given by the map h3(f) :X/n (Y which is given by h3(f)((x(n):=f(x) where x((x(n. It is possible to construct additional examples of this kind which show how to use systems-morphisms to reach a coarser structural model of a given formal model. The construction of this mapping is based on the knowledge of certain equivalence relations. As an example, in the case of finite automata, the knowledge of a dynamic preserving congruence relation defined on the state set Q is required.

It has already been pointed out that the most refined models used in micromachines, which are used for modeling the functional architecture or the nonfunctional properties are given by ordinary or partial differential equations systems. Generally we can assume that the field of “differential equations of mathematical physics” will be sufficient to do the job. The solutions of these types of models form a large variety of dynamical systems. On the other hand we know that for a top down design of micromachine we have to start from a MSR and we have to be able to construct formal models at the different levels of architecture and to relate them by morphisms. In consequence we see that in micromachines design, the knowledge of the morphisms associated with the dynamics of such differential equations is essential. Michael Arbib, an eminent promoter of mathematical systems theory and cybernetics, appropriately calls such morphisms dynamorphisms.

Therefore, from a purely mathematical point of view, the task is to study the different kinds of possible dynamorphisms of certain dynamical systems that appear as solutions of differential equations describing the physical phenomena in micromachines. Although such a program would be desirable for it’s theoretical results, at the current stage of micromachine engineering it is still of little practical value. The problem is, as we have pointed out earlier, that currently only a few reusable components for micromachines are known. This means that there are not enough practical examples of successful micromachine design currently available in order to elaborate a relevant theory of dynamorphisms. The theoreticians will have to wait until practitioners develop examples of these kind of components for the higher levels of micromachines modeling.

It should be mentioned that the development of the formal models used in the field of microelectronic design required the same steps. The development of the formal methods for logic synthesis and high level synthesis, including the development of appropriate design languages such as VHDL, could only take place after several years of practical experience in the design of complex integrated microelectronic circuits “by hand” (i.e., by the skillful and innovative work of a designer).

5.5 Inductive and Deductive Decomposition

The task of refining an architectural model MMAi of level i into a model MMAi+1 of level i+1 requires knowing appropriate decomposition methods. We distinguish here between two classes of decomposition methods: inductive methods and deductive methods. We first discuss the principal approach of both methods and then concentrate on deductive decomposition methods, which from the standpoint of mathematical systems theory are more interesting.

Inductive decomposition methods, as we call them here, are based on the following heuristic procedure; for a given model M of a component of the architecture MMAi of level i we select “by experience” from the known candidates of components of the refined architecture MSAi+1 k models M1,M2,...,Mk together with an appropriate coupling concept K such that the network K(M1,M2,...,Mk) of coupled models fulfills the requirements R(M) of M. The selection of M1,M2,...,Mk and of K depends mainly on the skill and experience of the designer and is therefore considered an “art”. Concerning requirements of K(M1,M2,...,Mk) we have, however, to consider the following fact; the components M1,M2,...,Mk, and the coupling model K, generally create additional requirements Ra(M1), Ra(M2),..., Ra(Mk), Ra(K) which have to be fulfilled by the micromachine MM. It is left to the skill of the designer to take this fact into account when finding the best suited decomposition K(M1,...Mk) of M.

The second class of decomposition methods, inductive decomposition methods, are based on a computing method which derives K(M1, M2, ..., Mk) from the component model M. The construction of the models M1, M2, ..., Mk is done using the appropriate morphisms h1, h2, ..., hk which map M, which is part of the architectural model MMAi, into the models M1 = h2(M), ..., Mk = hk(M) contained in the architectural model MMAi+1. In addition, an associated mathematical computing method k must be known, which derives for given M, M1, M2, ..., Mk the coupling model K = k(M,M1,M2,...,Mk). With respect to the discussion of the requirements of the decomposition K(M1, M2, ..., Mk) of M which is derived by a deductive decomposition method, the same arguments which we gave in the case of inductive decomposition remain valid.

5.6 Deductive Decomposition of Dynamical Systems

Deductive decomposition methods of the kind which we discussed above do exist for specific classes of dynamical systems. This is the case if a dynamical system Dyn(M) allows the construction of the morphisms (i.e., dynamorphisms in the sense of Arbib) h1,h2,...,hk which enable the computation of a decomposition K(M1,M2,...,Mk) as we discussed above. It is known that with any dynamical-invariant equivalence relation (of the state space of Dyn(M) we can associate a dynamorphism h(by the map h(: Dyn(M)(Dyn(M)((of Dyn(M) into the quotient-dynamical system Dyn(M)/(. In that way the question concerning the finding of the suitable dynamorphisms h1,h2,...,hk is reduced to the task of the construction of proper dynamical-invariant equivalence-relations (1,(2,...,(k on the state space of Dyn(M). The following examples show that the determination of (1,(2,...,(k is most effectively done by means of a “generative concept” Gen(M) of Dyn(M), (e.g., a model which determines the (global) state transition function of Dyn(M) only locally such that Dyn(M) can be derived from Gen(M) by “integration”). For the following four specific classes of dynamical systems we sketch the associated deductive decomposition method based on dynamical invariant equivalence relations.

Decomposition of Finite State Machines (Hartmanis-Stearns (6(
For each Finite State Machine FSM, the set of all possible dynamical-invariant equivalence relations is given by the lattice L(FSM) consisting of the set of all congruence relations of FSM. The computation of L(FSM) is generally a computationally hard problem. However, for most of the practical cases in microelectronics and micromachine the determination of the appropriate congruence relations (1,(2,...,(k can be done and an associated decomposition K(FSM1,FSM2,...,FSMk) with FSMi=FSM((i (i=1,2,...,k) can be computed (Müller-Wipperfürth (18().

Decomposition of Linear Differential systems LDS=(A,B,C) (Pichler (7()

Each A-invariant subspace U of the state space Rn of a linear time-invariant differential system LDS=(A,B,C) defines an associated dynamical-invariant equivalence relation (on Rn by q(q : (q-q (U for q,q(Rn. For each such (we have an associated linear system LDS((which uses the quotient space Rn(U as a state space. The function h which maps LDS to LDS/(is a dynamorphism. By selection of a set of appropriate A-invariant subspaces U1, U2,...Uk it is possible to reach a related decomposition K((LDS/(1,..., LDS/(k) of LDS.

Decomposition of ordinary nonlinear differential systems (Krener ((8()

For ordinary nonlinear differential systems with corresponding differential equation system of the form x’=f(x,u,t); x(0)=xo it is possible to use the associated Lie algebra to compute decompositions.

Decomposition of general dynamical systems with input and output (Mesarovic-Takahara (2(, Pichler ((9(, (10()

It has been shown how to construct for a general causal input/output function f, an associated dynamical system Dyn(f). As soon as the function f allows the computation of a dynamical invariant congruence relation on the state space of Dyn(f) it is possible to represent f by a decomposition of Dyn(f).

The examples indicate that for specific classes of dynamical systems there do exist associated deductive decomposition methods with possible applications to the design of the micromachine architecture model. It is obvious that additional mathematical work will be necessary to extend and adapt such methods so that they are of practical value to micromachine engineering. Future development in micromachine design and in the associated micromachine technologies will provide the proper motivation to continue such theoretical research.

5.7 Conclusion

We dealt with conceptual and theoretical issues related to micromachine design. Micromachines are highly integrated circuits which are based on different technologies, especially: microelectronics, micromechanics, microacoustics, microhydraulics, micro-vacuum tubes, and micro optics. Using such different technologies it is possible to implement different kinds of “machines” and to integrate them by coupling them into a complex system on a single silicon chip. For modeling a micromachine we need, depending on the different realization technologies for its components and their couplings, a variety of different modeling concepts and tools. The complexity of the modeling process provides new challenges during systems design. The paradigms which exist for modeling and tool making (i.e., those used in microelectronics, mechanical engineering or control engineering) need to be revised and adapted for the new requirements (DeMan ((4(). In addition to the development of CAD tools for the engineering support of the designer, formal mathematical methods and related tools have to be investigated and elaborated. This related research constitutes for the near future an important task in applied mathematics and mathematical systems theory.

Micromachines, as it was pointed out, are rapidly developing. Currently the development of different microtechnologies and material science oriented research are the main focus. With regard to building blocks for components, only “intelligent” sensors and “intelligent” actuators have reached some level of stability in design. The example of microelectronics design and related tool development suggests that the final development of systems theoretical approaches in microsystems design has to wait until a certain degree of maturity in design practice has been reached. A benchmark for this could be the existence of a full catalogue of reusable building blocks and components and related models resulting from the successful design of microsystems. However, we suggest to start with fundamental studies in this field today in order to be better prepared for future cooperation with design practitioners.

6. Design of Intelligent Peripheral Systems Components

6.1 Introduction

Industrial high tech products such as computers, mobile phones, video-recorders, DVD-players and others are often “closed” in the sense, that it is not possible to change the user interface for adaption to individual personal requirements. This is not satisfying. In this paper we address the problem of the design of an additional peripheral system component to improve the situation, that means to adapt the overall system to desired requirements. Very often an improvement of the existing user interface for man/machine interaction towards a more intelligent behavior of the system is desired. This paper discusses this problem from a general systems theoretical point of view. As a conceptual framework for the design of the proper peripheral system component we use the concept of a “holon” and of “holarchical structure” as introduced originally by the writer and scientist Arthur Koestler (11(, (12(. This framework has found recently much attention, especially in the field of organisation (see for example Mathews (13() and in cellular manufacturing.

6.2 Holons and Holarchical Structures: A short introduction

A holon, according to Koestler is a model-component with a “Janus face” - one side looking “down” and acting as an autonomous system giving directions to “lower” components and the other side looking “up” and serving as a part of a “higher” holon.

Holons, in the sense of Koestler, are essential in hierarchical systems with intelligent performance. They allow the modeling of complex phenomena in a non-reductionistic way. In a multi-strata hierarchy, in the sense of M. Mesarovic (a hierarchical ordered system where every level is a domain specific abstract version of the overall real system under consideration) holons are the components for modeling parts of the system at different levels. They emerge in this case from the dependent holons in the model of the next lower level.

In the case of multi-strata hierarchies the mathematical concept of structural “morphisms” – used to relate models of different levels onto each other - plays an important role. Using this concept there is a good chance that a rigorous mathematical approach to construct such models does exist and there is a chance that mathematical means for their analysis will be available.

A different situation is given by hierarchies which are multi-layer systems (in the sense of M. Mesarovic). These are hierarchies are models of the overall system, where the components receive “orders” from components above and transmit “orders” to components on the next lower layer of the model. When Arthur Koestler introduced his concept of a “Self organizing Open Hierarchical Order” (SOHO) to define what he called a “holarchy” he had a multi-layer hierarchy in mind with holons as its components.

Holons in the sense of Koestler are important modeling means for components of any hierarchical model of a real system with complex behavior.

Systems Theory, the scientific discipline which has the goal to provide formal models for solving complex problems in science and engineering, has the task to elaborate the concept of holon and related holonic models and to provide methods and computerized tools for its application.

In the following we will try to explain in more detail the approach of Arthur Koestler in modelling complex systems.
Hierarchies are models in a specific decomposed form. The different control- and communication channels between the components constitute the coupling system of the decomposition. Certainly, a hierarchy with holons as its components, a holarchy, constitutes generally a very desirable decomposition of the overall system.

In the case of a “multi-strata hierarchy” (in the sense of Mesarovic) the overall model is decomposed into different levels, where each level models the real system in discussion from a certain domain-specific and abstract point of view. A model component at a certain level represented by a multi-strata hierarchy is a refinement of the model components of the level above. On the other hand each model component at a level emerges by aggregation from several model components of the level below. Besides of such a “Janus-face” property of model components additional features of components are required to assure “intelligent” behavior of the level components.

A different type of decomposition of a model is given by a “multi-layer hierarchy”. There the individual components again are ordered hierarchically, however depending on the level in the hierarchy they have to fulfill specific functions. Examples of typical applications of multi-layer hierarchies are given by organization charts of a company which determines the responsibility in decision making, supervision, and workload distribution. While for multi-strata decomposition of formal models mathematical methods do exist, it seems that for multi-layer decomposition not so many methods are known. Their practical realisation depends very often on an evolutionary process over a period of time. As mentioned already above, multi-layer hierarchies are used as the framework of a holarchy. The performance of a “multi-layer holarchy” depends strongly on the degree of autonomy of the individual holons. The extreme case, that the holons depend in their functionality completely on the leading holons of the most upper layer represents dictatorship with a central organization enforcing bureaucracy. The other extreme case that the individual holons of a multi-layer holarchy are completely independent determines an uncoordinated system which most likely performs in a chaotic manner. To find a balance between these extreme cases is an important goal in the design of complex systems.

Arthur Koestler defines for the SOHO-structure explicitly what he means by the “Janus face property” of a holon. When looking “down”, a holon represents a quasi-autonomous whole (self-assertion tendency) such that the depending holons of the next level have for performing their main function no need in coupling their input- and output channels to other holons.

On the other hand, looking “up”, a holon integrates its functions into a existing or developing whole (integration ability).

In the case of living systems Koestler points out that in adult holons the self-assertion tendency is realized by the emphasis on rituals caused by instincts and by stereotypical thinking caused by past experience. The ability to integrate is supported by the creativity of a holon to adapt to new needs of the associated whole.

According to the hierarchical functioning of a holarchy Koestler distinguishes between input-hierarchies and output-hierarchies. Input hierarchies in the sense of Koestler operate to achieve from the signals and states associated with holons on lower levels an abstraction or generalization represented by the signals and states of holons on upper levels. Input hierarchies have therefore the main function to compute the emergent properties in a holarchy.

Output-hierarchies, on the other hand are defined by Koestler as holarchies which operate in the opposite direction of an input hierarchy. They take signals and states from holons of upper levels and transform them to specific concrete signals and states suitable for the proper operation in holons of the lower levels of a holarchy. A combination of both could be called an output/input hierarchy.

Further properties which are introduced by Arthur Koestler to specify a SOHO-structure concern the degree of arborisation of a holarchy and the degree of reticulation of such a structure. Further he discusses the importance of regulation channels, which take care that in a holarchy signals are transmitted only one step at a time, up or down. The holons of a SOHO-structure have to be balanced between being “mechanized” and having a certain degree of “freedom”. Holons on higher levels have usually more freedom for their operation while holons at lower levels will usually have to follow more mechanized patterns in their operation. Another important property of a SOHO-structure concerns its degree of performance between dynamical equilibrium and complete disorder. Dynamical equilibrium is achieved if the self assertion tendency and the integration tendency of the holons counterbalance each other. Disorder appears if those tendencies dominate each other.

The final statements in Koestler’s definition of the properties of a SOHO-structure are devoted to regeneration. Critical challenges caused by the environment of a holarchy result in changes of rules for operating holons such that an adaption to new circumstances is realized by a reached new state of equilibrium. After this discussion of the framework of A. Koestler for the construction of intelligent hierarchically ordered models let us return to our topic of peripheral system components.

6.3 Functionality and Architecture of holonic peripheral system components

The principal coupling of a peripheral system component (PSC) is shown in Figure 3.

Figure 3: User-interface realized by a peripheral system component

The symbol u denotes a signal which is desired for the user to be transmitted for communication with the engineering system S. The symbol v denotes the actual signal which is accepted by S. The peripheral system component PSC has the task to transform u into v. On the other hand S reacts by a signal v which has to be transformed by PSC into a signal y which is acceptable and understood by the user. The specification of the pair (u,y) is completely done by the requirements given by the user, to the contrary the pair (v, w) is determined by the system S. The transformation T which maps u into v (v=T(u)) is a “many to one” function which realizes an “intelligent” decision making. For complexity reasons it is often necessary to realize T in several steps to reduce the dimensionality of the problem. Such a decomposition of T gives reasons to assume for PSC a multi-level architecture. The respond w of S on the other hand has to be transformed by PSC to the signal y by a proper transformation
[image: image1.wmf]T

. If we assume that the PSC is able to adapt to the individual user (characterized by the kind of input signal u he has chosen) we may assume that
[image: image2.wmf]T

also acts “with intelligence” in assigning to w an output
[image: image3.wmf])

(

,

w

T

y

y

=

, to the user which is best understood. The adaption of
[image: image4.wmf]T

 to such individual user requirements needs the knowledge and setting of parameters at the proper semantic level. Therefor also for
[image: image5.wmf]T

, to reduce the design complexity, we may to assume a stepwise realization on different levels of the PSC architecture.

In Figure 4 we show as an example a 3-level architecture of a peripheral system component.

Figure 4: 3-level architecture of PSC

In this example we assume that the interaction of PSC with S can be established between the different levels of PSC such that
[image: image6.wmf]))

,

,

(

),

,

,

((

)

,

(

3

2

1

3

2

1

w

w

w

v

v

v

w

v

=

.

Such a coordination, however, is only possible if the engineering system S is partly open to signals at higher levels of PSC.

Next we discuss the construction of PSC with multi-level architecture as a holarchical system (holonic peripheral system component HPSC). The first step is to assume that the transformations T and
[image: image7.wmf]T

 have a tree-like internal structure which realizes the different levels and where the nodes are holonic units in the sense of Arthur Koestler. T and
[image: image8.wmf]T

 realizes an output/input hierarchy in the sense of Koestler. Figure 5 shows an example of such a structure.

Figure 5: Holonic Structure of PSC (output/input hierarchy)

From a systems theoretical point of view a hierarchical model as shown in Figure 3 defines a multi-layer system specification. At each level only a certain portion of the overall functionality is covered. How to design a multi-layer system by an associated multi-strata system specification is shown in (4(.

6.4 Realization of holonic peripheral system components

The realization of a holonic peripheral system component (HPSC) can be done by different means of modern information technology. In (14(it is shown that a software solution can be achieved by using the conceptual framework of organizational multi agent systems (15(. In this case holons are considered as agents which are specific objects (in the sense of the object-oriented programming paradigm). In principle this approach can also be taken for hardware or hardware/software realizations of a HPSC. However, in case of a hardware solution or a mixed hardware/software solution it is often desirable to base the design and the realization of a HPSC on known formal models which are specific dynamical systems specifications such as finite state machines, sequential switching circuits, petri–nets, neuronal networks, discrete event systems or difference-or differential equation systems. The advantage of using such formalisms results from the availability of an associated theoretical framework which allows the application of optimization methods and a systematic approach towards requirement verification. However, such a more formal approach needs the knowledge of effective decomposition methods to construct a suitable multi-strata system specification and an associated multi-layer system specification for the holonic peripheral system component. In the next chapter we show in the case of finite state machine how such an architecture for a HPSC can be computed.

6.5 Multi-level decomposition of finite state machines

We show now how for a PSC a multi-layer decomposition, as it is required for a HPSC, can be constructed. This under the assumption that the output/input hierarchy, consisting of the pair
[image: image9.wmf])

,

(

T

T

 of transformations, can be realized by a finite state machine model.

We follow in our example here essentially the work (16(where the CAST-tool CAST.FSM has been used for that task.

Generally speaking, decomposition of finite state machines (FSMs) deals with the problem of how a machine can be replaced by more than one simpler machines, i.e. a single FSM is transformed into a network of FSMs. In the case of a parallel decomposition of a FSM, a single machine M is divided into a certain number of submachines whereby the parallel connection of those smaller submachines
[image: image10.wmf])

2

(

n

i

M

i

£

£

 simulates the original finite state machine M. Consequently for each of the so obtained submachines Mi a parallel decomposition can be obtained by splitting Mi into
[image: image11.wmf])

2

(

n

j

M

ij

£

£

 and so on. The various possibilities of potential parallel decompositions are given by the lattice of the machine or submachine that is actually been taken into account. For further theoretical details the reader may be referred to the well known monography of Hartmanis and Stearns.

Figure 6: Multi-strata representation of a FSM decomposition

We consider as an example the parallel decomposition of a FSM M into three submachines M1, M2 and M3 whereby M1 and M3 are further decomposed into M11, M12 and M13 respectively into M31, M32 and M33 and so on. In this multi-strata representation of FSM reached by parallel decompositions, each level represents the whole system. In (14(it has been shown, how in general a holarchical structure in form of a multi-layer representation can be derived from a multi-strata representation. In our case of FSMs we have to choose a node, i.e. a submachine, at each level that will be considered as the direct superior of the other nodes (submachines) being situated in the same level.

Figure 6 shows the adaption of the exemplary representation of the FSMs parallel decomposition to the desired (holarchic) interpretation as an intermediate step where the multi-strata representation is fully included and the holarchic (multi-layer) model is represented in the bold highlighted part of the figure.

The nodes of the multi-layer model are exactly the leaves of the multi-strata model. Therefore, it is an obvious specification for the design of such a holarchic model that each subtree emerging by multiple parallel decomposition has to be built up in a way that exactly one of the newly emerging submachines will become the direct superior of the other nodes. As a rule for the destination of this superior-machine it is reasonable to choose that submachine that has the least number of states on order to perform leader tasks.

In actual computation of multi-strata representations and the associated multi-layer representation for finite state machines, as shown in Figure 6, can be done by the CAST-tool CAST.FSM (17(. Such computations have been done in the past for the case of MCNC benchmark machines (18(.

6.6 Intelligent mechanism

For the construction of a HPSC it is essential to know how to define “intelligent behavior”. In the following we will try to introduce a general viewpoint to define “self regulation” and “self repair”. Both self organizing features of a system can be considered as desirable in order that it behaves intelligently. Again we demonstrate this on the example of finite automata.

For the design of an “intelligent” behavior of a multi-layer network N(M) of finite automata, we assume that the state transition functions (i and the associated output functions (i of the different component automata of the network are the only variables, which can be “tuned” to get the wanted intelligent features of N(M) of self-regulation and self-repair. We shall discuss in principle how on this basis an “intelligent” network can be established.

In case that the requirement E (the wanted I/0 behavior) changes from E to E*=E+(E, a detector device Dreg must start a procedure to determine the set (N(M) of finite automata of the network N(M) which have to change their state transition function (i and their output function (i so that the new requirement E* is satisfied. In the case, that the change requires a new design, the associated partial network of component automata has to be computed anew. However, the choice of a specific new hierarchical architecture might influence the stability properties (stability with respect to requirement changes) of the network. In consequence it follows that network designers should follow a “design for stability” strategy.

For the discussion of the feature of self-repair we assume that we know for N(M) a fault model which is based on faults realized by unexpected changes of the state transition function or (and) the output function of one or more of the component automata of the network. The detector Drep recognizes such a fault by the lack of meeting the requirements E and starts a procedure to locate the faulty machines. Then, following a certain strategy, parts of the network are recomputed (this might result in a change of the partition of the “work load” for the components or also in canceling components and associated subnets and others) in such a way that it returns to normal function so that N(M) meets again the requirement E.

Our approach to achieve self-regulation and self-repair depends on the determination of the lack of meeting the requirements E with the detector devices Dreg and Drep, by N(M) which is a kind of “centralized intelligent” property.

Since in a holarchy the components themselves should behave intelligently, it is necessary that the components should be able locally to detect their ability to contribute by their changes to the satisfaction of new requirements E* or to compensate for a faulty function. This means that components Mi have to be equipped with a local detecting device Di which detects the lack of satisfying the requirements and “knows” that by certain changes the component Mi is able to contribute to satisfy the additional requirements (E which are requested (this in the case of self-regulation). Di detects furthermore the lack of meeting the individual locally requirements Ei. This if Mi performs faulty. Consequently the network N(M) reacts in the neighborhood of Mi such that the requirements Ei are again satisfied (self repair). To promote further a possible “intelligent” behavior of the components we might assume that a component Mi also has an associated learning device Li which contributes to the effectiveness of self-regulation and self-repair, so that by a network strategy the “speed” of self organisation is optimal. For the construction of the learning modules Li and their net-wide cooperation, the results of artificial intelligence research (e.g. the method of case-based reasoning) can be used. An established extension of the finite automata Mi to finite automata (Mi,Di,Li) with detection and learning abilities of the kind discussed, together with network functions which support cooperation between the automata with respect to the goal of self-regulation and self-repair, will justify to call such a design a holarchical network of automata.

6.7 Fields of Application

Although this paper emphasizes a general systems approach in designing an intelligent peripheral component of an engineering system we want to point to possible fields of application. One important topic is the design of intelligent workstations as discussed in the book of Rubenstein-Schwärtzel (19(. Other applications concern all kind of terminals for banking, ticket sale, game playing etc., intelligent roboter design, semantic supported high level programming, design of “speak writers” and intelligent peripheral systems components required for establishing security. In general, any additional supporting device (in computer science any “application software”) with intelligent “input/output behavior” is a candidate for being a holonic peripheral system component in our sense.

6.8 Conclusion

We introduced the concept of a holonic peripheral system component HPSC of an engineering system which provides intelligent behavior. The general framework is taken from A. Koestler which introduced in his books, the concepts “holon”, “holarchy” and also that of a “Self organizing Open Hierarchical Order” (SOHO). We suggest to use these concepts to structure a HPSC as a multi-layer model to realize an intelligent interface for an existing engineering system. A fundamental part of design requirements is given by an I/0 relation represented by the pair of transformations
[image: image12.wmf])

,

(

T

T

 which has to be decomposed into a holarchical structure. The nodes situated on the different levels represented by the holons of this structure are intelligent acting processing elements which are responsible for fulfilling level-specific requirements. For the concrete realization of HPSC’s different means exist for modeling and implementation. Besides of the application of the conceptual framework of organizational multi-agent systems (OMAS), formalisms which represent dynamical systems of different kind are of interest. In this case an existing theoretical knowledge might help for optimal design and getting a speed-up of algorithms. In general our discussion of intelligent peripheral components can help to contribute for a conform sight of the problem area and for an uniform approach in the development of tools for modeling and implementation of such components.

7. Conclusion and Outlook

By the new available basic components which are provided by information technology for data processing and data transmission many existing engineering systems have the tendency to become kind of large scale and need special efforts in their design. On the other side of the scale, microelectronics and the new growing field of micromachines allow the manufacturing of engineering systems which are by their number of building blocks and by the way they interact to realize a wanted functionality, difficult to design and need strong efforts in modeling and implementation.

Microprocessors, signalprocessors, application specific integrated circuits (ASICS’s) as they are realized in microelectronic technology are classical examples. Intelligent acting sensoric or actoric devices, microrobots for medical applications, intelligent peripheral add-on devices in microelectronics- or micromachine technology for existing engineering systems which increase the functionality to new dimensions are modern examples. Such facts need a rethinking of the currently existing design praxis and new approaches which make use in addition to the available CAD/CAM tools special tools which apply mathematical means for top down refinement and optimization are necessary and have to be developed. For this strong efforts in research and development are required, both at the universities and also at the research centers of the industries. However, it seems that not at all institutions which are responsible for the funding are aware of the importance of such necessary research. It is therefore necessary to make this generally known, such that the necessary support is provided.

References

(1(
Bertalanffy, L.: General System Theory. Georg Braziller, New York, 1968.

(2(
Mesarovic, M. D., Y. Takahara: General Systems Theory: Mathematical Foundations. Academic Press, New York-London, 1975.

(3(
Pichler, F.: General Systems Theory Requirements for the Engineering of Complex Models. In: Computer Science, No 585, Springer Verlag Berlin-Heidelberg, pp. 132-141. 1992.

(4(
DeMan, H.: Microsystems: A Challenge for CAD Development. In: Microsystems Technologies 90, H. Reichl ed., Springer Verlag Berlin, pp. 3-8. 1990.

(5(
Birkhoff, G.D.: Dynamical Systems, Amer. Math. Soc. Coll. Publ. Vol. 9. Amer. Math. Society, New York. 1927.

(6(
Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines. Prentice Hall, Inc. Englewood Cliffs, N.J. 1966.

(7(
Pichler, F.: On the decomposition of linear dynamical systems. In: Proceedings of the 3rd European Meeting on Cybernetics and Systems Research, pp. 445-454 (Hemisphere Publishing Corporation Washington). 1976.

(8(
Krener, A.J.: A decomposition theory for differential systems. In: Proceedings of the IFAC 6th World Congress, Boston, August 24-30, 1975. Part 1, Theory, paper 36.5. 1975.

(9(
Pichler, F.: Mathematische Systemtheorie: Dynamische Konstruktionen. Walter de Gruyter Berlin New York. 1975

(10(
Pichler, F.: Dynamical Systems Theory. In: Cybernetics: Theory and Applications (ed. R. Trappl), Springer Verlag Berlin, pp. 43-56. 1983.

(11(
Koestler, A.: The Ghost in the Machine. Hutchinson & Co Ltd, London. 1967.

(12(
Koestler, A.: Janus. A Summing Up. Hutchinson & Co Ltd, London. 1978.

(13(
Mathews, John: Holonic Organisational Architectures. Human Systems Management. Vol. 15, No.1, pp. 27-54. 1996.

(14(
Pichler, F.: Modeling Complex Systems by Multi-Agent Holarchies. LNCS 1798. Springer-Verlag, Berlin-Heidelberg. pp. 154-168. 2000

(15(
Ferber, J.: Multi Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman. 1999.

(16(
Affenzeller, M., F. Pichler, R. Mittelmann: On CAST.FSM Computation of Hierarchical Multi-layer Networks of Automata. LNCS 2178. Springer-Verlag, Berlin Heidelberg. pp. 36-44. 2001.

(17(
Pichler, F., H. Schwärtzel (eds): CAST Methods in Modelling. Springer-Verlag Berlin-Heidelberg. 1992.

(18(
Müller-Wipperfürth, T., M. Geiger: Algebraic Decomposition of MCNC Benchmark FSMs for Logic Synthesis. IEEE Proceedings EURO ASIC’91. Paris. pp. 146-151. 1991.

(19(
Rubenstein, A. H., H. Schwärtzel (eds): Intelligent Workstations for Professionals. Springer Verlag Berlin-Heidelberg, 1993.

 ((

 B� Q x A�Q

				

 			

B� h1(Q) x A�h1(Q)

h1

h1

h2(()

h3(()

h3(f)

h1

h2

X

Y

h1(X)

h2(Y)

f

User

Peripheral System

Components PSC

Engineering

System S

u

v

y

w

T1

T1

T2

T2

T3

T3

PSC

User

Engineering

System S

v1

v2

v3

w1

w2

w3

u

y

T31

T31

T32

T32

T33

T33

T34

T34

T35

T35

T1

T1

T21

T21

T22

T22

T23

T23

Level 3

Level 2

Level 1

M111

M112

M113

M131

M132

M133

M311

M31

M313

M331

M332

M333

M11

M13

M312

M33

M12

M32

M1

M3

M

M2

problem definition

problem solution

model construction

implementation

model analysis

S

S2

S12

S124

S123

S122

S121

S1221

S1222

S12222

S12221

S11

S1

_1088580552.unknown

_1088581533.unknown

_1088838931.unknown

_1088845242.unknown

_1088845393.unknown

_1088839054.unknown

_1088838877.unknown

_1088588798.unknown

_1088581366.unknown

_1088580041.unknown

_1088580082.unknown

_1088579992.unknown

