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Abstract

An intelligent peripheral system is defined by us as any IT-technology component which serves in the neighbourhood of a computing systems (a main frame, a personal computer, a signal processing system, a micro controller etc) in an intelligent manner. The network and the interface for the connection of an intelligent peripheral system to the main station can also be considered as an integrating part of peripheral systems.

We want to consider in our presentation specific intelligent peripheral systems consisting of holons in a hierarchical network in the sense of Arthur Koestler.
In the first part the concept of a holon and the related holarchical structure of a network is presented. It is pointed out that holons and associated networks can be described by the concept of an intelligent agent following the terminology as introduced by Ferber.

Furthermore, dynamical systems of different kind can be used as a concept for modelling holons and can be organized to get a holonic hierarchical structure. As an example we present this in the case of finite state machines. 

Possible application of our concepts can be found in modern systems of information technology such as mobile communication networks and computer systems where intelligent “add on” devices can be considered as holonic peripheral system components in our sense.

1. Introduction

Industrial high tech products such as computers, mobile phones, video-recorders, DVD-players and others are often “closed” in the sense, that it is not possible to change the user interface for adaption to individual personal requirements. This is not satisfying. In this paper we address the problem of the design of an additional peripheral system component to improve the situation, that means to adapt the overall system to desired requirements. Very often an improvement of the existing user interface for man/machine interaction towards a more intelligent behavior of the system is desired. This paper discusses this problem from a general systems theoretical point of view. As a conceptual framework for the design of the proper peripheral system component we use the concept of a “holon” and of “holarchical structure” as introduced originally by the writer and scientist Arthur Koestler (1(, (2(. This framework has found recently much attention, especially in the field of organisation (see for example Mathews (3() and in cellular manufacturing. 

2. Holons and Holarchical Structures: A short introduction

A holon, according to Koestler is a model-component with a “Janus face” - one side looking “down” and acting as an autonomous system giving directions to “lower” components and the other side looking “up” and serving as a part of a “higher” holon.

Holons, in the sense of Koestler, are essential in hierarchical systems with intelligent performance. They allow the modeling of complex phenomena in a non-reductionistic way. In a multi-strata hierarchy, in the sense of M. Mesarovic (a hierarchical ordered system where every level is a domain specific abstract version of the overall real system under consideration) holons are the components for modeling parts of the system at different levels. They emerge in this case from the dependent holons in the model of the next lower level.

In the case of multi-strata hierarchies the mathematical concept of structural “morphisms” – used to relate models of different levels onto each other - plays an important role. Using this concept there is a good chance that a rigorous mathematical approach to construct such models does exist and there is a chance that mathematical means for their analysis will be available.

A different situation is given by hierarchies which are multi-layer systems (in the sense of M. Mesarovic). These are hierarchies are models of the overall system, where the components receive “orders” from components above and transmit “orders” to components on the next lower layer of the model. When Arthur Koestler introduced his concept of a “Self organizing Open Hierarchical Order” (SOHO) to define what he called a “holarchy” he had a multi-layer hierarchy in mind with holons as its components.

Holons in the sense of Koestler are important modeling means for components of any hierarchical model of a real system with complex behavior. 

Systems Theory, the scientific discipline which has the goal to provide formal models for solving complex problems in science and engineering, has the task to elaborate the concept of holon and related holonic models and to provide methods and computerized tools for its application.

In the following we will try to explain in more detail the approach of Arthur Koestler ((1(, (2() in modelling complex systems.
Hierarchies are models in a specific decomposed form. The different control- and communication channels between the components constitute the coupling system of the decomposition. Certainly, a hierarchy with holons as its components, a holarchy, constitutes generally a very desirable decomposition of the overall system. 

In the case of a “multi-strata hierarchy” (in the sense of Mesarovic) the overall model is decomposed into different levels, where each level models the real system in discussion from a certain domain-specific and abstract point of view. A model component at a certain level represented by a multi-strata hierarchy is a refinement of the model components of the level above. On the other hand each model component at a level emerges by aggregation from several model components of the level below. Besides of such a “Janus-face” property of model components additional features of components are required to assure “intelligent” behavior of the level components.

A different type of decomposition of a model is given by a “multi-layer hierarchy”. There the individual components again are ordered hierarchically, however depending on the level in the hierarchy they have to fulfill specific functions. Examples of typical applications of multi-layer hierarchies are given by organization charts of a company which determines the responsibility in decision making, supervision, and workload distribution. While for multi-strata decomposition of formal models mathematical methods do exist, it seems that for multi-layer decomposition not so many methods are known. Their practical realisation depends very often on an evolutionary process over a period of time. As mentioned already above, multi-layer hierarchies are used as the framework of a holarchy. The performance of a “multi-layer holarchy” depends strongly on the degree of autonomy of the individual holons. The extreme case, that  the holons depend in their functionality completely on the leading holons of the most upper layer represents dictatorship with a central organization enforcing bureaucracy. The other extreme case that the individual holons of a multi-layer holarchy are completely independent determines an uncoordinated system which most likely performs in a chaotic manner. To find a balance between these extreme cases is an important goal in the design of complex systems. 

Arthur Koestler defines for the SOHO-structure explicitly what he means by the “Janus face property” of a holon. When looking “down”, a holon represents a quasi-autonomous whole (self-assertion tendency) such that the depending holons of the next level have for performing their main function no need in coupling their input- and output channels to other holons.

On the other hand, looking “up”, a holon integrates its functions into a existing or developing whole (integration ability).

In the case of living systems Koestler points out that in adult holons the self-assertion tendency is realized by the emphasis on rituals caused by instincts and by stereotypical thinking caused by past experience. The ability to integrate is supported by the creativity of a holon to adapt to new needs of the associated whole.

According to the hierarchical functioning of a holarchy Koestler distinguishes between input-hierarchies and output-hierarchies. Input hierarchies in the sense of Koestler operate to achieve from the signals and states associated with holons on lower levels an abstraction or generalization represented by the signals and states of holons on upper levels. Input hierarchies have therefore the main function to compute the emergent properties in a holarchy.

Output-hierarchies, on the other hand are defined by Koestler as holarchies which operate in the opposite direction of an input hierarchy. They take signals and states from holons of upper levels and transform them to specific concrete signals and states suitable for the proper operation in holons of the lower levels of a holarchy. A combination of both could be called an output/input hierarchy.

Further properties which are introduced by Arthur Koestler to specify a SOHO-structure concern the degree of arborisation of a holarchy and the degree of reticulation of such a structure. Further he discusses the importance of regulation channels, which take care that in a holarchy signals are transmitted only one step at a time, up or down. The holons of a SOHO-structure have to be balanced between being “mechanized” and having a certain degree of “freedom”. Holons on higher levels have usually more freedom for their operation while holons at lower levels will usually have to follow more mechanized patterns in their operation. Another important property of a SOHO-structure concerns its degree of performance between dynamical equilibrium and complete disorder. Dynamical equilibrium is achieved if the self assertion tendency and the integration tendency of the holons counterbalance each other. Disorder appears if those tendencies dominate each other. 

The final statements in Koestler’s definition of the properties of a SOHO-structure are devoted to regeneration. Critical challenges caused by the environment of a holarchy result in changes of rules for operating holons such that an adaption to new circumstances is realized by a reached new state of equilibrium. After this discussion of the framework of A. Koestler for the construction of intelligent hierarchically ordered models let us return to our topic of peripheral system components.

3. Functionality and Architecture of holonic peripheral system components

The principal coupling of a peripheral system component (PSC) is shown in Figure 1.


Figure 1: User-interface realized by a peripheral system component

The symbol u denotes a signal which is desired for the user to be transmitted for communication with the engineering system S. The symbol v denotes the actual signal which is accepted by S. The peripheral system component PSC has the task to transform u into v. On the other hand S reacts by a signal v which has to be transformed by PSC into a signal y which is acceptable and understood by the user. The specification of the pair (u,y) is completely done by the requirements given by the user, to the contrary the pair (v, w) is determined by the system S. The transformation T which maps u into v (v=T(u)) is a “many to one” function which realizes an “intelligent” decision making. For complexity reasons it is often necessary to realize T in several steps to reduce the dimensionality of the problem. Such a decomposition of T gives reasons to assume for PSC a multi-level architecture. The respond w of S on the other hand has to be transformed by PSC to the signal y by a proper transformation 
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. If we assume that the PSC is able to adapt to the individual user (characterized by the kind of input signal u he has chosen) we may assume that 
[image: image2.wmf]T

also acts “with intelligence” in assigning to w an output 
[image: image3.wmf])

(

,

w

T

y

y

=

, to the user which is best understood. The adaption of 
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 to such individual user requirements needs the knowledge and setting of parameters at the proper semantic level. Therefor also for 
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, to reduce the design complexity, we may to assume a stepwise realization on different levels of the PSC architecture. 

In Figure 2 we show as an example a 3-level architecture of a peripheral system component.


Figure 2: 3-level architecture of PSC

In this example we assume that the interaction of PSC with S can be established between the different levels of PSC such that 
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Such a coordination, however, is only possible if the engineering system S is partly open to signals at higher levels of PSC. 

Next we discuss the construction of PSC with multi-level architecture as a holarchical system (holonic peripheral system component HPSC). The first step is to assume that the transformations T and 
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 have a tree-like internal structure which realizes the different levels and where the nodes are holonic units in the sense of Arthur Koestler. T and 
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 realizes an output/input hierarchy in the sense of Koestler. Figure 3 shows an example of such a structure.


Figure 3: Holonic Structure of PSC (output/input hierarchy)

From a systems theoretical point of view a hierarchical model as shown in Figure 3 defines a multi-layer system specification. At each level only a certain portion of the overall functionality is covered. How to design a multi-layer system by an associated multi-strata system specification is shown in (4(. 

4. Realization of holonic peripheral system components

The realization of a holonic peripheral system component (HPSC) can be done by different means of modern information technology. In (4( it is shown that a software solution can be achieved by using the conceptual framework of organizational multi agent systems (5(. In this case holons are considered as agents which are specific objects (in the sense of the object-oriented programming paradigm). In principle this approach can also be taken for hardware or hardware/software realizations of a HPSC. However, in case of a hardware solution or a mixed hardware/software solution it is often desirable to base the design and the realization of a HPSC on known formal models which are specific dynamical systems specifications such as finite state machines, sequential switching circuits, petri–nets, neuronal networks, discrete event systems or difference-or differential equation systems. The advantage of using such formalisms results from the availability of an associated theoretical framework which allows the application of optimization methods and a systematic approach towards requirement verification. However, such a more formal approach needs the knowledge of effective decomposition methods to construct a suitable multi-strata system specification and an associated multi-layer system specification for the holonic peripheral system component. In the next chapter we show in the case of finite state machine how such an architecture for a HPSC can be computed. 

5. Multi-level decomposition of finite state machines

We show now how for a PSC a multi-layer decomposition, as it is required for a HPSC, can be constructed. This under the assumption that the output/input hierarchy, consisting of the pair 
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 of transformations, can be realized by a finite state machine model.

We follow in our example here essentially the work (6( where the CAST-tool CAST.FSM has been used for that task. 

Generally speaking, decomposition of finite state machines (FSMs) deals with the problem of how a machine can be replaced by more than one simpler machines, i.e. a single FSM is transformed into a network of FSMs. In the case of a parallel decomposition of a FSM, a single machine M is divided into a certain number of submachines whereby the parallel connection of those smaller submachines 
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 simulates the original finite state machine M. Consequently for each of the so obtained submachines Mi a parallel decomposition can be obtained by splitting Mi into 
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 and so on. The various possibilities of potential parallel decompositions are given by the lattice of the machine or submachine that is actually been taken into account. For further theoretical details the reader may be referred to the well known monography of Hartmanis and Stearns.


Fig. 4: Multi-strata representation of a FSM decomposition

We consider as an example the parallel decomposition of a FSM M into three submachines M1, M2 and M3 whereby M1 and M3 are further decomposed into M11, M12 and M13 respectively into M31, M32 and M33 and so on. In this multi-strata representation of FSM reached by parallel decompositions, each level represents the whole system. In (4( it has been shown, how in general a holarchical structure in form of a multi-layer representation can be derived from a multi-strata representation. In our case of FSMs we have to choose a node, i.e. a submachine, at each level that will be considered as the direct superior of the other nodes (submachines) being situated in the same level.

Figure 4 shows the adaption of the exemplary representation of the FSMs parallel decomposition to the desired (holarchic) interpretation as an intermediate step where the multi-strata representation is fully included and the holarchic (multi-layer) model is represented in the bold highlighted part of the figure.

The nodes of the multi-layer model are exactly the leaves of the multi-strata model. Therefore, it is an obvious specification for the design of such a holarchic model that each subtree emerging by multiple parallel decomposition has to be built up in a way that exactly one of the newly emerging submachines will become the direct superior of the other nodes. As a rule for the destination of this superior-machine it is reasonable to choose that submachine that has the least number of states on order to perform leader tasks.

In actual computation of multi-strata representations and the associated multi-layer representation for finite state machines, as shown in Figure 4, can be done by the CAST-tool CAST.FSM (7(. Such computations have been done in the past for the case of MCNC benchmark machines (19(.

6. Intelligent mechanism

For the construction of a HPSC it is essential to know how to define “intelligent behavior”. In the following we will try to introduce a general viewpoint to define “self regulation” and “self repair”. Both self organizing features of a system can be considered as desirable in order that it behaves intelligently. Again we demonstrate this on the example of finite automata.

For the design of an “intelligent” behavior of a multi-layer network N(M) of finite automata, we assume that the state transition functions (i and the associated output functions (i of the different component automata  of the network are the only variables, which can be “tuned” to get the wanted intelligent features of N(M) of self-regulation and self-repair. We shall discuss in principle how on this basis an “intelligent” network can be established.

In case that the requirement E (the wanted I/0 behavior) changes from E to E*=E+(E, a detector device Dreg must start a procedure to determine the set (N(M) of finite automata of the network N(M) which have to change their state transition function (i and their output function (i so that the new requirement E* is satisfied. In the case, that the change requires a new design, the associated partial network of component automata has to be computed anew. However, the choice of a specific new hierarchical architecture might influence the stability properties (stability with respect to requirement changes) of the network. In consequence it follows that network designers should follow a “design for stability” strategy.

For the discussion of the feature of self-repair we assume that we know for N(M) a fault model which is based on faults realized by unexpected changes of the state transition function or (and) the output function of one or more of the component automata of the network. The detector Drep recognizes such a fault by the lack of meeting the requirements E and starts a procedure to locate the faulty machines. Then, following a certain strategy, parts of the network are recomputed (this might result in a change of the partition of the “work load” for the components or also in canceling components and associated subnets and others) in such a way that it returns to normal function so that N(M) meets again the requirement E.

Our approach to achieve self-regulation and self-repair depends on the determination of the lack of meeting the requirements E with the detector devices Dreg and Drep, by N(M) which is a kind of “centralized intelligent” property. 

Since in a holarchy the components themselves should behave intelligently, it is necessary that the components should be able locally to detect their ability to contribute by their changes to the satisfaction of new requirements E* or to compensate for a faulty function. This means that components Mi have to be equipped with a local detecting device Di which detects the lack of satisfying the requirements and “knows” that by certain changes the component Mi is able to contribute to satisfy the additional requirements (E which are requested (this in the case of self-regulation). Di detects furthermore the lack of meeting the individual locally requirements Ei. This if Mi performs faulty. Consequently the network N(M) reacts in the neighborhood of Mi such that the requirements Ei are again satisfied (self repair). To promote further a possible “intelligent” behavior of the components we might assume that a component Mi also has an associated learning device Li which contributes to the effectiveness of self-regulation and self-repair, so that by a network strategy the “speed” of self organisation is optimal. For the construction of the learning modules Li and their net-wide cooperation, the results of artificial intelligence research (e.g. the method of case-based reasoning) can be used. For getting an orientation in this respect we refer to Hanson-Remmele-Rivest (17(. An established extension of the finite automata Mi to finite automata (Mi,Di,Li) with detection and learning abilities of the kind discussed, together with network functions which support cooperation between the automata with respect to the goal of self-regulation and self-repair, will justify to call such a design a holarchical network of automata.

7. Fields of Application

Although this paper emphasizes a general systems approach in designing an intelligent peripheral component of an engineering system we want to point to possible fields of application. One important topic is the design of intelligent workstations as discussed in the book of Rubenstein-Schwärtzel (8(. Other applications concern all kind of terminals for banking, ticket sale, game playing etc., intelligent roboter design ((9(, (10(), semantic supported high level programming ((11(, (12(), design of “speak writers” ((13(, (14() and intelligent peripheral systems components required for establishing security ((15(, (16(). In general, any additional supporting device (in computer science any “application software”) with intelligent “input/output behavior” is a candidate for being a holonic peripheral system component in our sense.

8. Conclusion

The paper deals with the concept of a holonic peripheral system component HPSC of an engineering system which provides intelligent behavior. The general framework is taken from A. Koestler which introduced in his books (1(, (2(, the concepts “holon”, “holarchy” and also that of a “Self organizing Open Hierarchical Order” (SOHO). We suggest to use these concepts to structure a HPSC as a multi-layer model to realize an intelligent interface for an existing engineering system. A fundamental part of design requirements is given by an I/0 relation represented by the pair of transformations 
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 which has to be decomposed into a holarchical structure. The nodes situated on the different levels represented by the holons of this structure are intelligent acting processing elements which are responsible for fulfilling level-specific requirements. For the concrete realization of HPSC’s different means exist for modeling and implementation. Besides of the application of the conceptual framework of organizational multi-agent systems (OMAS), formalisms which represent dynamical systems of different kind are of interest. In this case an existing theoretical knowledge might help for optimal design and getting a speed-up of algorithms. In general our discussion of intelligent peripheral components can help to contribute for a conform sight of the problem area and for an uniform approach in the development of tools for modeling and implementation of such components.
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