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1. Introduction

The development of the Microelectronic-technology, here especially the sensor- and actuator technology, opened in the past new ways for the development of high integrated circuits which in addition to microelectronis and transducers, contain mechanical components and optical components which ware realized by the new available Micromechanic-technology and the Microoptic-technology, respectively.

In consequence this results in getting new means for the construction of complex systems by coupling such new components with the conventional already existing microelectronic components and systems. For the design and also for the manufacturing process new efforts are required to meet the challenges caused by this new field of microsystems (micro-elektromechanical systems, micromechatronics).

This paper will concentrate mainly to the problem area of the design process.

We are mainly interested in the kind of models which are needed for building blocks and their couplings to form larger systems. Here, formal (mathematical) constructions for model-building and model-transformations deserve our specific interest. With that goal in mind, we have reached the point, that we ask simply, what topics of applied mathematics, specifically what topics of mathematical systems theory, could other help in the design of microsystems. As usually, we may expect that the introduction of the newly developed microsystems-technology will cause new means of applied mathematics and mathematical systems theory to be able to deal with. Although existing methods can be adapted to meet modeling requirements of microsystems design, it will be necessary, and the experience of the past with microelectronics confirms that, that new formal modeling concepts and related methods have to be developed. However, we might expect, that the rich source of existing theory in (pure) mathematics provides already in the abstract the backbone for such investigations. 

However, to discover such already existing parts of mathematics for the given task, certain practical familiarity in applied mathematics and systems theory is a prerequisite; a fact, which is often reelected by pure mathematics which considers the situation very often as “trivial”. 

2. The Microsystem-Modeling Process

Modeling of a desired microsystem starts already with the definition of the so-called “requirements”, which have to be fulfilled as seen from the clients point of view.

We distinguish between “functional” and “nonfunctional” requirements. Functional requirements are generally defined in engineering as the properties of a system which guarantee the wanted function. In case of a microsystem MS they define the properties which are expected to contribute to a proper embedding into the overal system, the environment of MS. Very often they form an Input/Output relation (I/O relation), a “black box” which has to be realized. Non functional requirement, on the other hand, define conditions which have to be met by the microsystem. Usually they concern domainspecific properties, e.g. properties which express to economical or physical features. Seen in a more formal way, nonfunctional requirements are very often expressed by restriction of the validity of variables to certain domains. Contrary to functional requirements nonfunctional requirements need very often detailed knowledge of domain-specific models in order that they can be evaluated. 

Requirements, as expressed by the client, are very often formulated in natural language. For processing requirements by means of computer aided design tools (CAD tools) it is necessary to translate them into a formal form using a certain programming language. We reach so for the microsystem MS to be designed a first formal model MSR, a model which describes MS by is requirements R expressed in a programming language.

The next step in the design of MS is the most difficult one. It concerns the construction of an architectural model MSA for the given requirement model MSR which proves to be feasible and which, at the same time fulfills all the requirements as given by MSR. The step from MSR to MSA is usually decomposed into several steps, where each individual step is a refinement in the architecture. Starting from MSR we reach so different architectural models MSA1,...MSAn-1, MSAn = MSA where MSA i+1 is a refinement of  MSA i (i=1,2,...,n-1).

MSA = MSAn can then be associated with an hierarchical model of height n. While for all architecture models MSA1 to MSAn the fulfillment of the given functional requirements is mandatory, only MSAn =MSA will assure that in addition the nonfunctional requirements are met. MSA consists of components and couplings (interfaces) between them with known instance-models, that are models which allow the evaluation of nonfunctional requirements and which assure physical reliability. 

Considering the current state of the art in microsystems design we must confess that our picture of stepwise top-down design of the architecture is too ideal. In many practical cases of design, modeling the architecture above a physical level is hardly possible. The reason for this is partly given by the fact that the design of complex microsystems in a systematic way is rather rare. Such systems are currently still very often the result of invention by a creative designer using all his intuition. Another point is, that until today the models of components and subsystems of coupled components are not available in a “stable sense”, that is with fixed material properties. It is still necessary to design “in the material” and not “on the material” to use an expression coined by Hugo de Man. In most cases of microsystems design the properties of the material has to be considered as unknown, to be fixed as part of the design activity.

For the mentioned reasons, the construction of MSA starting from MSR is kind of difficult, since the fulfillment of the requirements is only given when models which specify the material properties are reached. However, with the progress in microsystems we might expect for the future that more and more microsystems components and building blocks will exist, which allow a “requirement driven” top down design as we have sketched above.

With MSA we have finished the design phase and the next phase, the implementation phase might start, that means the conversion of the “blue print” as given by MSA into an engineering product.

3. Systemstheoretical Models of MSA

According to the goal of this paper we investigate possible formal modelling means for the design of the architecture model MSA. Principally, since microsystems are generally very rich with respect to their physical structures, their mathematical models potentially can use any kind of mathematical structure. However, since we want to pursue a systemstheoretical point of view in modeling specific mathematical theories can be selected. The question what kind of mathematical models are suitable for the construction of MSA starting from MSR can be considered as equivalent to the question what kind of homomorphic constructions can be developed to model the components and couplings of the sequence MSA1, MSA2,... of architectural models which leads to MSA. 

For components and couplings of MSA of strongly refined kind, differential equation systems are without any doubts important mathematical means for their modeling. While in microelectronics systems of ordinary differential equations are for many kind of electronic models applicable, are partial differential equation systems in micromechanics and microoptics important additional mans. The same is true for certain instance models, where nonfunctional requirements which concern properties in space and time have to be evaluated. Regarding the type of models to be used for MSR we might assume that their formal nature is given by different graphs, functions etc. In conclusion we may state, that the model-types for MSA1,...MSAn-1 will be some kind of homomorphic images of differential equation systems which relate to each other and which allow that certain nonfunctional requirements can be evaluated. For MSA1 it is required that it can be imbedded mathematical into MSR such that the fulfillment of the functional requirements can be proven. From the case of microelectronics, where the art of modeling the design process has a mature stage, homomorphic images in that sense are well known. For digital microelectronics we mention as examples

· boolean functions

· binary sequential switching circuits

· finite state machines

· extended finite state machines

· petri nets

For analog microelectronics, examples to be applied to building blocks of information transmission systms are given by

· 2-port circuirts

· multi-port circuits

· transfer functions

· frequency filters and equilizers

· models for modulation devices

· A/D transducers

Similarly we might assume that such examples can also be found for the field of micromechanics and microoptics. In micromechanics we can for example consider the primitive machines like inclined plane, crank, wedge, and screw and the derived machine elements as transmissions, gears or ball-bearing as candidates for the definition of such homomorphic images.

At the current stage of research and development in microsystems we are not yet able to give a full picture of the kind of formal models as part of mathematical systems theory. We have still to wait for practical results in microsystems design. As soon as certain building blocks of microsystems become stable in that sense, that they are considered as reusable parts, it will make sense to formalize them and to prepare are related theoretical framework, such that they can be identified as homomorphic images of more refined formal models. As an example, where such an empirical approach in the development of mathematical systems theory has taken place, we mention the theory of automata. Its  development started in the early fifties of this century, as soon as digital electronic circuits with a memory become practical and a functional description of the behavior of such circuits was needed. Another example is given by the development of the use of complex numbers in electrical engineering by Charles Proteus Steinmetz in connection with the introduction of the alternating current in homes and in industry in the 80’is of the last century. Today both fields of mathematical systems theory, the theory of finite automata and the frequency theory of electrical networks, constitute important formal modeling means.

However, we should not miss to point here to a specific important topic of mathematical systems theory which has received in the past a carefully mathematical treatment. It is the field of “dynamical systems” as introduced many years ago by the famous monography of Birkhoff. Dynamical systems can be considered as homomorphic images of systems of solutions of differential equations. The existing theory spans a wide area of mathematical fields of algebra, topology and functional analysis. At this point we want to express the hope, that applied mathematicians and mathematical systems theorists  will pay in the future strongly attention to the field of dynamical systems to build a formal framework for modeling microsystems at the different architectural levels used in the top down design process.

4. Systems-Morphisms

A fundamental concept to relate formal models at the different levels of architecting to each other is, as we have already pointed out, is given by the concept of systems-morphisms. A systems-morphism maps a formal model of certain type to a more abstract model of usually the same type. It is required by definition that this mapping preserves certain structural properties of the model. As a simple example we mention the mapping of a finite automaton M=(A,B,Q,(,() onto its quotient M/~ by the map h=(h1,h2,h3) 

where M/~=h(M)=(A,B,h1(Q),h2((),h3(()).

The preservation of the structure of M by h is assured by the commutativity of the following diagram. 
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Similarly we might define a systems morphism h=(h1,h2) for a function f:X(Y by the commutative diagram
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It is known that any equivalenz relation ( of X allows the construction of a morphism of this kind. In the case of the “natural morphism” h(n) for f the equivalence relation n on X is given by xn(: (f(x)=f(() 
for all  (,x(X. In this case we have h1(X)=X/n  and h2(Y)=Y.

h3(f) is given by the map h3(f) :X/n (Y which is given by h3(f)( (x(n):=f(x) where x((x(n.

It would be possible to add more examples of this kind. This proves the possibility of constructing systems-morphisms such that a structurally more coarse formal model for a given formal model is reached. The construction of this mapping is based on the knowledge of certain equivalence relations. In case of finite automata, to mention an example, the knowledge of a so called congruence relation defined on the state set Q is required.

It has been already pointed out earlier that the most refined models used in microsystems, which are used for modeling the functional architecture or the nonfunctional properties are given by ordinary or partial differential equation systems. Generally we can assume that the so called “differential equations of physics” will be sufficient to do the job. The solutions of this type of models form obviously a big variety of dynamical systems of different kind. On the other hand we know that for a top down design of microsystems we have to start from MSR and we have to be able to construct formal models at the different levels of architecture and to relate them by morphisms. In consequence we see, that in microsystems design the knowledge of morphisms associated with the dynamics of “differential equations of physics” is an essential need. Michael Arbib, an eminent promotor of mathematical systems theory and cybernetics, calls such morphisms appropriate dynamorphisms.

Therefor, from a pure mathematical point of view, the task is to study the different kind of possible dynamorphisms of certain dynamical systems as they appear as solutions of differential equations which describe physical phenomena in microsystems. 

Although such a program is by the theoretical aspects very desirable it is at the current stage of microsystems engineering of little practical value. The problem is, as we pointed out earlier, that currently only few reusable component systems of microsystems are known. This means that there are not enough practical examples of successful microsystems design currently available, such that a relevant theory of dynamorphisms can be elaborated. It seems, that theoreticians have still to wait until practicioneers show on hand of examples the kind of components for higher levels in microsystems modeling.

It should be mentioned that the development of formal models in the field of microelectronics design took the same steps. The development of the methods for logic synthesis and high level synthesis including the development of appropriate design languages such as VHDL could only take place after several years of pracitcal experience in the design of complex integrated microelectronic circuits “by hand”, that is by the skillful innovative practical work of the designer.

5. Inductive and Deductive Decomposition

For the task of refining an architectural model MSAi of level i into a model MSAi+1 of level i+1 the knowledge of appropriate decomposition methods is a necessary requirement. We distinguish here between two classes of decomposition methods: inductive methods and deductive methods. We discuss first both methods by their principal approach and concentrate later to deductive decomposition methods, which are seen from the standpoint of mathematical systems theory more interesting.

Inductive decomposition methods, as we discuss them here, are based on the following heuristic procedure: For a given model M of a component of the architecture MSAi  of level i we select  “by experience” from the known components of the refined architecture MSAi+1  k models M1,M2,...,Mk together with an appropriate coupling concept K such that the network K(M1,M2,...,Mk) of coupled model fulfills the requirements R(M) of M. The selection of M1,M2,...,Mk and of  K depends mainly on skill and experience of the designer and is there for the consider as a part of “art”. Concerning requirements of K(M1,M2,...,Mk) we have, however, to consider the following fact: The components M1,M2,...,Mk and the coupling model K generally give reason of additional requirements Ra(M1), Ra(M2),..., Ra(Mk), Ra(K) which are fulfilled by the microsystems MS. It is left to the skill of the designer to take this fact into account in finding a best suited decomposition K(M1,...Mk) of M.

The second class of decomposition methods, the inductive decomposition methods are based on a computing method which derives K(M1,M2,...,Mk) from the component model M. The construction of the models M1,M2,...,Mk  is done by appropriate morphisms h1,h2,...,hk which map M, which is part of the architectural model MSAi into the models M1=h2(M),..., Mk=hk(M) contained in the architectural model MSAi+1. In addition, a mathematical computing method k must be known, such that which derives for given M,M1,M2,...,Mk the coupling model K=k(M,M1,M2,...,Mk).

With respect to the discussion of the requirements of the decomposition K(M1,M2,...,Mk) of M which is derived by a deductive decomposition method the same arguments, which we had in the case of inductive decomposition, are valid. 

6. Deductive Decomposition of Dynamical Systems

For specific classes of dynamical systems deductive decomposition methods of the kind which we discussed above does exist. This is the case if a dynamical system Dyn(M) allows the construction of morphisms (dynamorphisms in the sense of Arbib) h1,h2,...,hk which enable the computation of a decomposition K(M1,M2,...,Mk) as we discussed this above. It is known that with any dynamical-invariant equivalence relation  ( of the state space of Dyn(M) we can associate a dynamorphism h( by the map h(: Dyn(M)(Dyn(M)((
 of Dyn(M) into the quotient-dynamical system Dyn(M)/(. In that way the question concerning the finding of suitable dynamorphisms h1,h2,...,hk is reduced to the task of the construction of proper dynamical-invariant equivalence-relations (1,(2,...,(k on the state space of Dyn(M). The following examples show that the determination of
(1,(2,...,(k is most effectively done by means of a “generative concept” Gen(M) of Dyn(M) that is a model which determines the (global) state transition function of Dyn(M) only locally such that Dyn(M) can be derived from Gen(M) by “integration”.

We sketch in the following for four specific classes of dynamical systems the associated deductive decomposition method based on dynamical invariant equivalence relations.

(1) Decomposition of Finite State Machines (Hartmanis-Stearns (
()
For each Finite State Machine FSM the set of all possible dynamical-invariant equivalence relations is given by the lattice L(FSM) consisting of the set of all congruence relations of FSM. The computation of L(FSM) is generally a computational hard problem. However, for most of the practical cases in microelectronics and Microsystems the determination of appropriate congruence relations (1,(2,...,(k can be done and a associated decomposition K(FSM1,FSM2,...,FSMk) with FSMi=FSM((i,...,Mk)
(i=1,2,...,k) can be computed (Müller-Wipperfürth ((,(().

(2) Decomposition of Linear Differentialsystems LDS=(A,B,C) (Pichler ((, Zunde-Pichler (()

Each A-invariant subspace U of the state space (n of a linear time-invariant differential system LDS=(A,B,C) defines a associated dynamical-invariant equivalence relation ( on (n by q(q : (q-q (U for q,q((n. For each such ( we have an associated linear system LDS(( with the quotient space (n( U as state space. The functions h which maps LDS to LDS/( is a dynamorphism. By selection of a set of appropriate A-invariant subspaces U1, U2,...Uk it is possible to reach a related decomposition K((LDS/(1,..., LDS/(k) of  LDS.

(3) Decomposition of ordinary nonlinear differential systems  (Krener ((
)

For ordinary nonlinear differential systems with corresponding differential equation system of the form x’=f(x,u,t); x(0)=xo it is possible to use the associated Lie algebra to computer decompositions.

(4) Decomposition of general dynamical systems with input and output (Mesarovic ( (, Salovaara ( (, Pichler ( () 

It has been shown how to construct for a general causal input/output function f a associated dynamical system Dyn(f). As soon as the function f allows the computation of dynamical invariant congruence relations on the state space of Dyn(f) it is possible to represent f by a decomposition of Dyn(f).

The sketched examples indicate that for specific classes of dynamical systems associated deductive decomposition methods for possible applications in the design of the architecture model for microsystems do exist. It is obvious that additional mathematical work wile be necessary to extend and adapt such methods such that they become of practical value in microsystems engineering. Future development in microsystems design and in the associated microsystems technologies will give the proper motivation to continue such theoretical research. 

7. Conclusion
The paper deals with conceptual and theoretical issues related to the problem area of microsystems design. Microsystems, as it is well known, are highly integrated circuits which are based on different technologies such as microelectronics, micromechanics, microacoustics, microhydraulics, micro-vacuum tubes, micro optics and possible others. By these different technologies it is possible to implement different kind of “machines” and to integrate them by coupling to a complex system on a single silicon chip. For modeling a microsystem we need, depending on the different realization technologies for its components and their couplings, a variety of different modeling concepts and tools. The complexity of the modeling process is therefor a new challenge in systems design. The paradigms which are existing in modeling and tool making, as for example, used in microelectronics, mechanical engineering or control engineering, have to be revised and adapted to new needs (DeMan ( (). In addition to the development of CAD tools for the engineering support of the designer formal mathematical methods and related tools have to be investigated elaborated. The related research constitutes for the near future an important task in applied mathematics and mathematical systems theory. 

Microsystems, as it was pointed out in our paper, are in strong progress. Currently the development of different microtechnologies and material science oriented research receive the main interest. With regard to building blocks for components only “intelligent” sensors and “intelligent” actuators have reached some stability in design. The example of microelectronics design and related tool development suggests that the final development of systems theoretical approaches in microsystems design should wait until a certain degree of maturity in design practice has been reached. A benchmark for this could be the existence of a full catalogue of reusable building blocks and components and related models as result of successful designs of microsystems. However, we suggest to start with fundamental studies in this field already today to be better prepared for the later cooperation with design practicioneers. 
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