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Arthur Koestler’s Holarchical Networks:

A Systems-theoretical Approach

by Franz Pichler, Linz

1. Introduction

Arthur Koestler, well known as an author of numerous books, introduced in his work (Koestler 1967, 1969, 1978) a framework to describe the architecture of complex intelligent systems. Furthermore he tried to apply this framework to problems in different areas such as in brain research or in biological evolution. The main focus in describing this framework is given by Koestler to the concept of a „holon“, the janus-faced component of a hierarchical order, called by Koestler a „holarchy“. The collection of „Some General Properties of Self-Regulating Open Hierarchic Order“ (SOHO) as they are stated in the works of Koestler define in natural language the basic features of a holarchy.

In this paper we will try to interpret Koestler’s holarchy in terms of systems theory. This means that our interest lies in the construction and investigation of formal models which are a part of systems theory. It will not be possible to cover all system-theoretical aspects of Koestler’s architectural framework. However, we hope that we will be able to provide the basis for continuing work to reach a reasonable degree of systems theoretical knowledge for the use of the concept of a holarchy in practical applications.

This is motivated by the fact that recently in different areas, such as in organization (Mathews 1996), and in manufacturing (Kawamura 1997), promising applications of the holonic approach have been proposed and investigated.

2. Holarchical Networks: General Considerations

2.1
Modeling the Architecture

We start with the principal task of describing the systems architecture of a holarchy with the usual systems-theoretical means. A holarchy in the sense of Koestler can be classified as a multi-level system in a kind of a multi-layer system (in the sense of Mesarovic-Takahara (1970)) with – as seen top-down – a graph-theoretical tree-structure. Its components M(i,j) (= the j’th component on the i’th level) interact with the network and with the environment by the following couplings:

(1) each component M(i,j), (i=0,1,2,...,n-2) is coupled to its associated “parts” which consist of components M(i+1,k), k=l(1),l(2),...,l(i,j), of level i+1

(2) from each component M(i,j) (i=1,2,...,n-1) we have couplings to exactly one associated component M(i-1, k(i,j)) of the level i-1 above, the associated “whole”. Level 0 contains only one component M(0,1), the “root” of the network. M(0,1) has, according to our definition, no associated “whole” above it.

(3) each component M(i,j) of a holarchical network is coupled to the environment E of the network. In this sense all components M(i,j) can be considered as “open”.


2.2
Modeling the couplings

To model the couplings of a holarchy different concepts can be used. In the simplest case coupling can be defined by joining variables, dynamic or static, of the individual components. In more complex cases functions or relations (static or dynamically generated by some kind of “machines” such as, for example, marked petri-nets) can be used to define the couplings. In general, since in practice the different levels have a different semantic meaning, coupling operations have to be transducers to establish the proper connection between the different levels of language use.

2.3
Modeling components

In the simplest case a component M of a holarchy can be modeled by an I/0 relation M(X(Y, where X is the set of inputs and Y the set of outputs. A component of this kind is also called a “general system” (in the sense of M. Mesarovic (1975)) or a “black box” (if nothing is stated about how the I/0 relation M is constructed). However, as seen from the systems-theoretical point of view, the most desirable formal model for a component of a holarchy is given by a dynamical system with input and output DS. Most often a DS will be defined by an associated “generator” in the form of equations which describe locally the rate of state-changes. Examples are here given by differential- or difference equations, by marked petri-nets, by formal grammars, by the rule-bases of expert systems or by finite state machines. 

A hierarchical decomposition of a complex system, as requested by A. Koestler for building a holarchy, results in a division of the workload among the different components. While components M(i,j) of “higher” levels (i=1,2,...), to fulfill the functional requirements as posted by the environment E, contribute mostly to the planning part, the components M(i,j), (i=n-1,n-2,...) of the “lower” levels have to put an emphasis on the “physical” realization of the “tasks” as required by the environment. Besides observing the fulfillment of functional requirements, as they are stated via the associated “whole” M(i-1,k) above, they have to contribute to satisfying non-functional requirements which are typical for the associated level i. As a consequence the formal models to be used in the different levels of a holarchy have to differ in their granularity. While on higher levels symbolic operations which reflect qualitative features will be dominant, the models of the lower levels will have to perform numerical and quantitative operations. 

To make the mathematical analysis of a holarchy feasible, it is advisable to choose the model-types for the different components M(i,j) as homogeneously as possible. To give an example, if we use for all components formal models of a dynamical system with input and output, then we are able to apply the concept of “dynamorphism” as introduced by M. Arbib (Pichler 1983) to describe the couplings between the different levels. Furthermore, in case of the existence of an effective method to decompose a specific type of dynamical system, we are able to build the network in a top-down manner starting from the dynamical system given on top.

The most important feature of an holarchical network, as defined by Arthur Koestler, concerns its self-regulating property. It is assumed that such a network adapts automatically to new requirements (as given by the environment) and automatically corrects internal faults by establishing a new configuration of its architecture. 

Self-regulation in that sense is only possible if every component possesses a certain degree of autonomy to be able to respond in the appropriate intelligent manner. The model-types of classical systems theory, which are by their tradition rather “mechanical”, have to be extended towards “biological” features such as learning, adaptation and others. In the following we try to sketch principal approaches to construct such extensions.

2.4
Examples for holonic components

I/0 Relations

For formal models of components in a holarchy which describe the functional behavior by I/0 relations intelligence can be considered as their ability to change their behavior aimed at new goals.

For a I/0 relation which is parametrized (decomposed into a family of I/0 relations which describe the different possible functional behaviors) such a change means the transition to a new parameter value which results in a behavior which is more appropriate with respect to the goal. The selection of such a new parameter requires a learning process based on past experience. The learning might also result in the request to extend the originally given I/0 relation or to reduce it. The use of the I/0 relation (black boxes) as components of a holarchic network requires, as we see, such extensions to be able to establish self-regulation.

Dynamical Systems

Dynamical systems, in the sense of their definition by Birkhoff-Mesarovic (Pichler 1983), with a causal (global) state-transition function can be extended in different ways to become “intelligent”. 

One method can be based on a goal-directed selection of the initial state so that a wanted I/0 behavior is generated. This compares to the method which we sketched above in the case of I/0 relations. A second method (which is rather “classical”) uses the feedback of reached states or output values via a control operation to influence the input values of the dynamic system. By a proper choice of the control operation we might get a wanted change of the dynamic behavior, for example a change of the “speed” of certain trajectories or an improvement of stability properties. The adaption of the dynamic behavior depends on the proper choice of the control operation. If this choice is based on learning from past experience we might consider a dynamical system equipped with feedback control as “intelligent”.

Another means to establish an intelligent behavior of a dynamical system is given by a goal-oriented change of its (global) state transition function.

In most cases it is reasonable to define this by a change of the (local) state transition function of an associated “generator” of the dynamical system (e.g. a differential equation or a finite state machine). In control theory this method is known as “variable structure control”. Specific examples of this method are known for dynamical systems defined by stochastic automata and Markoff chains.

A larger change of the dynamic properties of a dynamical system is reached by changing the state set (change of the cardinality, the dimension, the mathematical nature of state values etc.). However, this might result in a drastic change of the available mathematical means for systems-theoretical considerations.

An example in this direction is provided by certain changes of the state transition function such that chaotic behavior appears. In this case the different generated state trajectories generate in turn an attractor (in the most complex case this is a so-called “strange attractor”) which generates a state set of new quality and new quantity. At this time the question whether such a change of the state set is of practical value (for the kind of applications which are envisaged for the use of Koestler’s holarchy concept) must left be open.

Intelligence in networks

Our discussion, so far, has treated the question in what manner formal models of components of a hierarchical network have to be extended to become “intelligent” (to a certain degree). It is still open how such  “locally” given intelligent formal models have to cooperate so that the whole network can be considered to have a “Self-Regulating Hierarchical Order” structure, according to A. Koestler.

In some simple cases, where the network is homogeneous in its components and in its coupling relations, a theoretical treatment of this question might be possible. However, in most cases such a homogeneity might not be feasible and a system-theoretical analysis based on deductive reasoning will not be possible. Simulation of the network on a computer and a related experimental investigation of the network properties will, then, be the only way to carry out the problem solving. The high standard of simulation methodology and simulation tools (see for example Zeigler-Prähofer (1999)) gives promise that problem solving by simulation can be successfully applied to the design and the analysis of holarchical networks.

An alternative in modeling holarchical networks is given by bionic approaches. One such method is provided by the method of evolution strategy as developed in I. Rechenberg (1973) and Schwefel (1998). In principle, this method, by an appropriate extension, could be used to develop efficient mechanisms to provide the necessary degree of “intelligence” which is required for holarchical networks.

A very specific hierarchical network is provided in the case where the components are artificial neurons, as used in common neural networks. From a systems-theoretical point of view each such neuron is a parametrized family of nonlinear I/0 functions, where the parameter is a list of weighting factors for the input signals. However, a neural network of this kind will not meet the properties of a holarchical network which are required by A. Koestler. 

However, there exist results for artificial neural networks, where the components on higher levels are of qualitative nature, reflecting the properties of aggregates of artificial neurons (Moreno-Diaz R. and J. Mira-Mira (1979)). Such constructions seem to be generally applicable to model holarchical networks. 

3. Design of holarchical networks

The following sketches the basic systems-theoretical approach for the construction of a holarchical network N(M) which meets the requirements of the associated  environment E.

3.1 Partition of tasks

As we know, each component M(i,j) of an holarchical N(M) represents, for its associated “parts” T(,T2,...,Tl which “live” on the level i+1 below, a “whole”. There exists no direct coupling relation between the parts; the necessary “communication” has to be established via the whole M(i,j). If we answer the question, how for a given component M(i,j) (i=0,1,...,n-1) the associated parts T(,T2,...,Tl can be constructed, we have also the means to design by iteration “top-down” the whole network N(M) starting on level 0 with a initial given “machine” M. By E we denote the set of all functional and non-functional requirements which M has to fulfill. In this case we write M(E. 

The principal idea for our approach consists of the first step in the construction of a decomposition K(M0,M(,...,Ml) of M(i,j) into components Mi(i=0,1,...,l) which fulfill individually associated requirements Ei (i=0,1,...,l) such that their “union” covers E; E0(E((...(El(E. In this case we write K(M0,M(,...,Ml) ( M(i,j). In a second step we distribute the workload (= the tasks to be solved) of M(i,j). We determine that the component M0 of the decomposition K(M0,M(,...,Ml) will be executed by M(i,j) on level i. However, the components M(,M2,...,Ml, which are left, are only planned by M(i,j) on level i. Their execution is delegated to the associated parts T(,T2,...,Tl on level i+1 of the network. This requires that each part Ti (i=1,2,...,l) simulates the associated component Mi in such a way, that the set Ei of requirements which are assigned to Mi are fulfilled. A simulation of Mi by Ti is denoted by Ti (i Mi. Figure 1 shows, using a block-diagram the relation between the “whole” M, the decomposition K(M0,M(,...,Ml) and the associated “parts” T(,T2,...,Tl.



For the construction of a decomposition K(M0,M(,...,Ml) of M two different types of methods can be distinguished: for a given pair (E,M) one type is given by methods which establish a proper selection of components M0,M(,...,Ml (known to the designer by past experience) together with an applicable coupling relation K so that K(M0,M(,...,Ml) is a decomposition of M. Methods of this kind are here called “inductive”. The second type of methods, which we call “deductive methods”, compute by mathematical-logical reasoning, starting from a given M, an associated decomposition K(M0,M(,...,Ml). In this case the components Mi(i=0,1,2,...,l) of the decomposition are specific homorphic images of M which reflect certain structural and behavioral properties. The coupling relation K ensures it provable that K(M0,M(,...,Ml) simulates M such that M(E is valid.

3.2 Network top-down design

The design of the overal holarchical network is established by a top-down procedure, which starts with the set E(0) of requirements to be fulfilled by the model M(0) at top-level 0. The decomposition K(M0(0),M((0),...,Ml(0)) derived for M(0) determines the partition of the workload between level 0 and level 1. M0(0) describes the execution part of systems activity at level 0, M((0),...,Ml(0) determines the planning part of M(0) at level 0. The task of execution of this planning is delegated to the associated parts T((0),T2(0),...,Tl(0) at the next level 1 below. Each part Ti(0), i=1,2,...,l(0) is now considered as a formal model Mi(1) on level 1 which is the basis for a continuation of the procedure that is: decomposition into an execution part and a planning part, followed by the delegation of the planning part to the next level. After k steps the procedure stops at formal models Mi(k) which can be fully executed and do not require the delegation of a planning part to parts at a next level below. 

3.3 Design of intelligent behavior

Until this stage, the construction of a holarchical network has only been concerned with its architecture, defined by a multi-layer system with a tree-structure. Next we will try to describe principal approaches to elicit  an “intelligent” behavior from the network. However, it will not be possible for us to make full use of the concept “intelligence” as defined in the field of “artificial intelligence”. It will be sufficient for us to define “intelligence” in general common sense terms.

The main goal which an intelligent behavior of a holarchical network N(M) should have is to maintain the relationship M(E regardless of unexpected changes (“noise”) of E or M, respectively. In case the set E of specified requirements changes to E* (we express this symbolically by E*=E+(E) the network N(M) has to react by a change to N*(M) = N(M) +(N(M) such that the “top model” M*=M*(0) again meets the requirements E*; M*(E*. 

In the second case we assume that an unexpected change of N(M) into N*(M)=N(M)+(N(M) takes place, such that N*(M) no longer meets the requirement E. Then, by internal mechanisms the network has to react so that finally a new network N**(M) which again fulfills the requirements E is reached. In specific cases we have N**(M)=N(M) which means that the network returns to its original form.

Any change of E and also of N(M) needs by our assumption a certain time (t. Similarly the “self-regulation” of N(M) to N*(M) =N(M)+(N(M) and also the “self-repair” from N*(M) to N**(M) needs a certain time span k(t. In order that such a regulation and also a correction is of practical value, an upper boundary for k(t has to be assumed. To give an example, if (t is measured by a few days it should be guaranteed that k(t will not  take longer than a few weeks. The number k determines the “speed” of self-regulation and of self-repair.

Since we assume that a holarchical network acts intelligently in an autonomous manner we have to provide N(M) with a detecting device D which observes the degree of fulfillment of M(E and starts, in case of failing, a procedure for self-regulating or self-repair, respectively. After detecting a change of E to E*=E+(E or a change of N(M) to N*(M)=N(M)+(N(M) by D this procedure has, in a first step, to identify parts of the holarchical network, which have to change their structure and their behavior so that the new requirements E* are fulfilled or, respectively, the network “returns” from N*(M) to N**(M). If M(i,j) is such a part this means that together with M(i,j) the kind and number of all the associated parts will change.

Self-regulation and self-repair in that sense are certainly important features of a holarchical network and reflect an intelligent behavior. However, in order that this is feasible, we need an additional property of the network, the property of “stability”. We call a network N(M) stable, if small changes (N(M) of N(M) result in small changes of the associated requirements (stability with respect to faults) and in addition, if small changes (E of the requirements need for compensation only small necessary changes of the network (stability with respect to requirement changes). To give such stability concepts a practical value it is necessary to determine how small changes of N(M) and of E, respectively, have to be measured. Besides stability properties, the “speed” k in k(t is an important factor for the evaluation of the effectiveness of self-regulation and self-repair, respectively. 

It is quite clear that our general approach to define “intelligence” in a holarchical network N(M) can only be considered as a first step. Further systems-theoretical steps have to be based on the assumption of specific given formal model types for the components of the network together with specific assumed coupling relations. 

4. Holarchical networks of automata

We want to apply our general approach from chapter 3 to the case where all components of the network are represented by finite automata (finite state machines with input and output).

Let the set E of requirements be given by an I/0 relation of the kind E(A*(B*, where A and B are (finite) alphabets and A* and B* denote as usual the set of all words over A and B, respectively.

We assume that for E there exists already a “realization” in form of a (deterministic) finite automaton M=(A,B,Q,(,(), such that M(E. We have then the task to construct N(M) so that all components are again finite automata. 

4.1 Hierarchical decomposition of M

As we know, the first step in constructing N(M) consists of the determination of a proper decomposition K(M0,M(,M2,...,Ml) of M, where the components Mi (i=0,1,...,l) are again finite automata. The well known algebraic structure theory of automata, as developed originally by Hartmanis-Stearns (1967) provides a deductive method to compute K(M0,M(,...,Ml). The lattice V(M) of M, consisting of all state congruences of M, determines the set of all possible serial/parallel decompositions of M. The selection of proper congruent relations (0,(1,...,(l from V(M), which is in line with the desired choice of M0,M(,...,Ml constitutes the first important step at level 0 to build N(M). It is followed by the construction of the finite automata T(,...,Tl for level 1. Each Ti, (i=1,2,...,l) simulates by (i the associated component machine Mi  of level 0;. The construction of Ti, (i=1,2,...,l)  has a certain degree of freedom (by the choice of the alphabets and the state set) so that the possible different semantic properties between level 0 and level 1 can be observed. By considering each Ti as a component Mi(1) at level 1 we are able to continue the procedure until finite automata Mi(k) are reached which need not  be, as we know, decomposed further.

The available requisite variety in constructing different specific nets N(M) is completely determined by the structure of the lattice V(M). Therefore a certain desired hierarchical decomposition of N(M) is only feasible if the proper structural requirements of V(M) are given (compare with Figures 3 and 4).






The computation of V(M) needs specific computer software tools (e.g. the tool CAST.FSM as developed at the University of Linz, Pichler-Schwärtzel (1992)).

4.2 Self-regulation and Self-repair

For the design of an “intelligent” behavior of the net N(M) of finite automata, we assume that the state transition functions (i and the associated output functions (i of the different component automata  of the net are the only variables, which can be “tuned” to get the wanted intelligent features of N(M) of self-regulation and self-repair. We shall discuss in principle how on this basis an “intelligent” net can be established.

In case the requirement E (the wanted I/0 behavior) change to E*=E+(E, a detector device D must start a procedure to determine the set (N(M) of finite automata of the net N(M) which have to change their state transition function (i and their output function (i so that the new requirement E* can be satisfied. As far as such component automata still require a planning part, the associated partial network of parts has to be computed anew. The choice of a specific hierarchical architecture influences the stability properties (stability with respect to requirement changes) of the network. In consequence it follows that network designers should follow a “design for stability” strategy.

For the discussion of the feature of self-repair we assume that we know for N(M) a fault model which is based on faults realized by unexpected changes of the state transition function or (and) the output function of one or more of the component automata of the network. The detector D recognizes such a fault by the lack of M(E and starts a procedure to locate the faulty machines. Then, following a certain strategy, parts of the network are recomputed (this might result in a change of the partition of the “work load” for the components or also in canceling components and associated subnets and others) in such a way that it returns to normal function so that M(E is met. 

Our approach to achieve self-regulation and self-repair depends on the determination of the lack of M(E, which is a kind of “centralized intelligent” property. 

Since in a holarchy the components themselves should behave intelligently, it is necessary that the components should be able locally to detect their ability to contribute by their changes to the satisfaction of new requirements E* or to compensate for a faulty function. This means that components Mi have to be equipped with a local detecting device Di which detects the lack of M(E and “knows” that by certain changes the component Mi is able to contribute to satisfy the additional requirements (E which are requested (this in the case of self-regulation). Di detects furthermore the lack of Mi(Ei  (by Ei we denote the requirements which are partly realized by Mi). This means that Mi performs faulty. By changes of the state transition function (i and the output function (i, the validity of Mi(Ei is reached again (self-repair). To promote further a possible “intelligent” behavior of the components we assume that a component Mi also has an associated learning device Li which contributes to the effectiveness of self-regulation and self-repair, so that by a network strategy the “speed” k of k(t is optimal. For the construction of the learning modules Li and their net-wide cooperation, the results of artificial intelligence research (e.g. the method of case-based reasoning) can be used. For getting an orientation in this respect we refer to Hanson-Remmele-Rivest (1993). An established extension of the finite automata Mi to finite automata (Mi,Di,Li) with detection and learning abilities of the kind discussed, together with the network function which supports cooperation between the automata with respect to the goal of self-regulation and self-repair, will justify to call such a design a holarchical network of automata.

5. Final comments and outlook

The goal of this paper was to contribute to an understanding of A. Koestler’s concept of a holarchy (a hierarchical network of tree-structure with intelligent nodes with “Janus-face”) as seen from the point of view of (general) systems theory. The ultimate goal is to reach a (mathematical) systems theoretical treatment so that the modeling of complex phenomena from science and engineering (which have features connected with “intelligence”) can be effectively realized computationally. More than thirty years have past since A. Koestler published his fundamental work on this subject. However, it seems that the relevant research does not give sufficient reference to Koestler. Since Koestler applies these concepts in the domain of biology and medicine rather deeply, it seems therefore to be reasonable to try to keep Koestler’s work alive and to help that it receives in the future a proper recognition by specialists. 

The author is aware that his presentation of the subject. as done here, can be considered as simple and trivial. However, this applies to many writings in “general systems theory” where the topic deals with high level issues and the connection to lower and deeper levels is not discussed and missing (and very often not known). It is the hope that continuing work will improve this situation, such that for certain areas of applied science and engineering useful results are acchieved.

In specific scientific areas, such as biology or the social sciences, where complex phenomena with holarchical architecture are dominant, a evolutionary approach for the finding of the proper morphism, which show emergent features seems to be very actual today. This is reflected by the emphasis on “nonlinear dynamic phenomena” or also (I believe) by the desire to explore “morphogenetic fields” (Sheldrake (1995)) starting from deep models (e.g. from the genetic code).

In the engineering of complex systems, especially in the field of information technology, top down approaches and bottom up approaches in design and analysis traditionally are applied together (“Meet in the middle” strategy).

There exist promising candidates for a possible refinement of our general discussion of above towards mathematical systems theoretical methods. One example is given by the new field of autonomous (software) agents with many possible applications in complex systems. 

Another example, which corresponds to our holarchical networks of finite automata of chapter 4 could be provided by the highly developed field of networks of automata and the study of their cooperative behavior (Wolfram (1986), Warschawski (1978)).

We will try to explore both areas from the holarchical point of view of Arthur Koestler in future works.
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Figure 1: Example of the tree-like architecture of a holarchy
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Figure 2: Requirement delegation from M to the components T(,T2,...,Tl
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Figure 3 : Hierarchical net of automata to be constructed
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Figure 4 : Substructure in V(M) required for a hierarchical net of automata as shown in Figure 3

















1
16

