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                            Abstract. John Casti introduced by several papers [1],[2],[3] a mathematical modeling method for metabolism-repair in biological cells following the approach of Robert Rosen [4].As a result Casti was able to determine algebraic criteria which describe for the linear time-invariant case functional conditions for repair and replication. Furthermore Casti was interested to compute for the metabolism map f, for the repair map P and for the replication map β by means of the realization algorithm of Kalman-Ho [5], which originally was developed for applications in control engineering, a state space representation given by the associated minimal dynamical system. Different authors, coming mainly from the field of mathematical biology, have made use of the results of Casti and have tried to extend the results [6],[7]. In this lecture and in the paper we repeat partly the results of John Casti but take the narrower point of view in describing the relevant I/O operations by discrete time convolution. Furthermore Casti computes on the basis of  the impulse response h by the method of Kalman-Ho the associated state space representations (F,G,H). By this approach he gets for the metabolism map f, the repair map P and the replication map ß   a algorithmic representations with the expectation to get so additional modeling means for the solution of associated biological problems. The application of the Kalman-Ho algorithm for realization requires, however, that the Hankel matrix of the associated impulse responses is finite dimensional. In the case of biological cells, the validity of this assumption seems to be difficult to prove. Any biological cell is in its inners a highly complex system which is reflected by its metabolism map and the associated impulse response. John Casti stated on this point, that it would be desirable to be able to compute partial realizations, which does not require finite dimensionality of the impulse responses. Our presentation follows this direction. We make use of the partial realization method as introduced for the scalar case by Rissanen [8]  and for the multi-variable case by Rissanen-Kailath [9]. In an earlier paper we used the partial realization method of  Rissanen to generalize the Massey Berlekamp algorithm of linear cryptanalysis for the case of multi-variable pseudo random sequences [10] The implementation of the partial  realization method of Rissanen-Kailath was reported by Jochinger [11]. It is our hope that our work can stimulate biological research in metabolism-repair by the use of the modeling approach of Rosen-Casti.

1. Introduction

Robert Rosen introduced in 1972 a new modeling method for repair mechanism of biological cells which is based on a functional I/O representation of cell operations [1]. John L. Casti extended the results of Rosen under the assumption of a discrete-time, linear and time-invariant metabolism operation  f  and derived new results in formulating requirements for the associated replication-map P  and also for the replication-map ß in order to guarantee their proper function. In addition Casti made use of the realization algorithm of Kalman-Ho to compute for f, P and ß their possible dynamical representation in form of  state space equations of minimal dimension. [2],[3]. From a systems-theoretical point of view the approach of Rosen and Casti in constructing the repair-map P and the replication-map ß can be considered as “natural” which means that they are derived mathematically from the given metabolism-map f  and ad hoc assumptions are avoided. Cast has emphasized the importance of this fact clearly in a paper which appeared in the book “Newton to Aristotle-Toward a Theory of Models for Living Systems” of 1989, which he edited together with Anders Karlqvist [4]. He points out, that the vailability of state space representations of  f, P and  ß might offer additional mathematical or systems-theoretical means for the solution of problems of biological interest. It is known that the realization method of Kalman-Ho requires a finite-dimensionality of the metabolism-map f  which is fulfilled if the Hankel-matrix of the associated impulse response h of f  is finite dimensional. It seems that from a biological point of view, this requirement can be hardly fulfilled since biological cells have a rather high inner complexity. Casti is aware of this limitation and states that the use of partial realizations which does not depend on the finite dimensionality of  f  would be desired.

Our paper deals with this question.We follow mainly the work of Rosen and Casti. In the first part we repeat some of the results of Casti but emphasize the use of convolution to represent f, P and  ß, respectively. As a new approach to to get a dynamical representation of  f, P and  ß, respectively, we use the method of partial realization of Rissanen and Kailath [5],[6]. This method does not require a finite dimensionality of  f  and allows to compute state space equations step by step in time. Since in praxis the metabolism-map f can always be assumed to be a finite time function partial realizations are sufficient to deal with a given empirical situation.

The author has tried to find results in literature which used or extended the work of John L. Casti. His search resulted only in two papers which come close [6],[7]. Any help for this search would be highly appreciated.

2. Modeling metabolism-repair and metabolism replication

We repeat in the following results of John L. Casti which have been reported in [1]-[3]. The goal is mainly to introduce our own notation which we will use in the subsequent sections.

2.1 Repair

Let  H( Ω, Γ) the set of functions from (  to (, where (  and (  denote the set of discrete- time, vector-valued real functions from N0 to Rm  and from N0 to Rn  , respectively. (  consists of m-variable inputsignals, (  is the set of corresponding outputsignals. Let f : Ω( Γ denote a function of  H( Ω, Γ). For (((  we denote with (  the value ( =f(() . The pair ((,() describes generally a cell metabolism created by f. The function f is then called a metabolism-map. For our purpose we are interested to consider a “basal” metabolism map f  which maps a given measured input-signal ( into the corresponding observed output-signal ( = f((). The goal of repair is to maintain the operation of f  to preserve the pair ((, ( ).For this purpose we introduce the repair-map P  by a function from Γ to H( Ω, Γ). In order that P is fulfilling the task of repairing f  the boundary condition P(( )=f  has to be valid. Casti has shown, that with f  also P  can be assumed to be linear. Depending on a change of the output-signal from (  to a signal ( ( caused by a perturbation of the basal metabolic map f  to a metabolic-map f which is different) Casti introduced the following cases of repair results P(( )=f*

(1)  f* = f    successful repair

(2)  f* = f   stabilization  at the new basal metabolic-map f

(3)  f* ( f   and   f* ( f   stabilization or repair after a finite number of 

                                     “hunting” steps or no stabilization or repair at all

                                      after a finite number of steps

Only the cases (1) and (2) are of interest to us. To find a criteria to determine which case of repair (1) or (2) can be achieved Casti introduced the following map (((,f) on H( Ω, Γ) which is defined by

(((,f) (f) := P(f(())                                                                                                       (1)

For the map(((,f)  Casti proved the following “Metabolic Repair Theorem”

(1) The metabolic perturbation f is stabilized iff (((,f) (f)=f

(2) The metabolic perturbation f will be repaired iff f is given by

f= f + f´  where f´( ker (((,f)

2.2 Replication

Casti defines the replication- map ß of  f   by a function from  (   to   H ((, H ((,()  which fulfils the  boundary condition  ß(f)=P. The replication map ß has the task to correct a mutation f of  f  by computing a repair-map which can be accepted. In analogy to the cases which have been distinguished before in repair the following outcomes P* of the replication operation can be distinguished:

(1)  P* = P         mutation is corrected

(2) P* = P    with  ß(f) = P,   mutation is stabilized

(3) P* ( P   and   P*( P  with  ß(f) =P,   mutation is stabilized after a finite  

                                                                  number of “hunting” steps or 

                                                                  stabilization does not appear at all.

To characterize the results of replication by a property of the repair-map P which is changed by mutation Casti introduces in analogy to the function(((,f)  the function(((,f) on H ((, H ((,()    by 

(((,f (P) := ß(P(f(()                                                                                                 (2)

With the function (((,f    Casti is in the position to prove the “Metabolism Replication Theorem”, 

analogous to the “Metabolism Repair Theorem” of before. For details the reader is advised to consult Casti [2].

3. Representation of the model by convolution

John L. Casti used in his work a number of different concepts and mathematical ideas to model metabolism, repair and replication. For the common reader coming from the field of biology it might be cumbersome to follow, although only elementary knowledge of Linear Algebra and Linear Systems Theory is needed. To give here help we make in the following strong use of the well known convolution operation to present the model. At the same time such a presentation makes it later easier to introduce the method of partial realization which allows us to get an effective implementation of the repeir- and replication machinery for metabolic processes.

3.1 Repair by convolution

We can assume that in a concrete case of investigation we are able to construct the basal I/O function f  which computes for the given input-signal (  the corresponding observed output-signal (  by   f(( )= ( . Since we assume f  as linear and time-invariant we are able present  f  by convolution as (  =  h ( (   where h denotes the impulse-response of  f .  In praxis h  has to be determined as the solution of  of the linear equation system  (  =  h ( (   where (( , ( )  is given.  Since the repair-map P  is also linear and time-invariant, there exist by analogous arguments a related impulse-response p  such that the operation of P  can be represented by convolution as  f =p ( (   or since (  =  h ( (   by  f =p (  h ( ( .This matrix equation serves also to determine p as its solution for given  f , h and (. With our notation we can introduce the function(((,h) on H( N0, R(n( m))  where R(n( m)  denotes the set of real matrices of size n(m, by

(((,h)(h) :=  p (  h ( (                                                                         (3)                                      

(((,h)  corresponds in our notation to the function (((,f)  which was introduced by Casti.. In consequence the “Metabolic Repair Theorem” of Casti reads now with the function (((,h)    
                     (1)   The metabolic perturbation f is stabilized iff  (((,h)(h)=h

               (2)  The metabolic perturbation h will be repaired iff f is given by

        h= h+ h´  where h´( ker (((,h)

To show that our notation of using the convolution operation is easy to use, we prove in the following the theorem:

(1) If h is stabilized this means that h*=h. Then (((,h)(h)=p( h(( = h*.

       By our   assumption  h*=h and h is a fixpoint of (((,h).

                          If  h is a fixpoint of  (((,h then (((,h)(h)=h or  p ( h ( ( = h*                                                                                                          
             (2)   If the metabolic perturbation  h  will be repaired then h*=h  which 

                     means   that   p ( h (  ( = h.  There exist a function h´ such that 

                     h = h + h´. Then p ( (h + h´) ( ( = p ( h ( ( +p ( h´( ( = h. 

                    Since  p ( h ( ( = h  it  follows   that  p ( h´( ( = 0  and therefore 

                    h´( ker(((,h.
                         If the metabolic perturbation h is given by h = h + h´   with  h´( ker ((, h  

                          then ((, h  (h) =  p ( h ( ( + p ( h´( (  =  h  since  p ( h´( (  = 0.

                         On the other hand ((, h  (h) = h*  therefore h* = h.

3.2 Replication by convolution

Just as in the case of repair we are able to present the replication-map ß  by means of the associated impulse response b . Then the boundary condition  P = ß(f)  reads in terms of  convolution as P = b ( f . By the assumption that P and also f are known it is possible to solve this linear matrix equation to get as its solution the impulse response b.  In modifying the function (((,f ) we define the function  (((,h)  by

(((,h):=  b (p ( h                                                                                                              (4)

Just as  (((,f)  the  function (((,h) can serve to characterize by its computed values

(((,h)(p) = p*  the results of replication as follows:

(1)  If p* = p    then the mutation p is corrected

(2)  If p* = p     then the mutation p is stabilized

(3)  If p* ( p  and  p* ( p   then there the model reaches after finite many steps stabilization 

       of the mutation or a stabilization is not at all reached.

The “Metabolic Replication Theorem” of Casti reads now in terms of the function (((,h) as follows:

(1)  The metabolic mutation p will be stabilized iff  (((,h)(p)=p

(2)  The metabolic mutation p will be corrected iff  (((,h)(p) = p + p´  with p´( ker (((,h)

The proof of this theorem can follow in its steps exactly the steps of the proof of the “Metabolic Repair Theorem” and can therefore  here be omitted.

4. Construction of Partial Realizations

So far our paper repeated in principle results on modelling metabolism-repair in biological cells as developed by John L. Casti. To prepare for our main task, to introduce the concept of partial realization, we emphasized the use of  impulse responses to represent the basal metabolism-map f, the repair-map P and the replication-map ß  of Casti. Furthermore we tried to point out, that the presentation of these maps by the convolution operation allows an easy proof of the the “Metabolic Repair Theorem” and the “Metabolic Replication Theorem” of Casti.

In this chapter we want to extend the results of Casti by using the method of partial realization as developed already 40 years ago by Rissanen [8] and Rissanen- Kailath [9]. This method allows to compute on the basis of the impulse-responses h, p and b  effectively partial realizations of the maps f, P and b, respectively. The method of partial realization was recently used by the author to generalize the Massey-Berlekamp algorithm of Linear Cryptanalysis [10] and implemented by Dominik Jochinger to allow to compute highly multivariable state space representations. First we discuss the dimension complexity which we will meet in computing the partial realization of the maps. For the metabolism-map f  we have assumed that it has m input-variable and n output-variable, where m,n ( 1.  This means, that f  represented by its associated matrix has dimension-complexity n(m. The repair-map P receives by (  a n-variable input-signal and computes by f  a function with dimension-complexity nm. We conclude that P has a dimension-complexity of n2(m. For the replication-map ß which receives as input-signal f  and computes P as its output we get therefore the dimension-complexity n3(m2. This means in consequence that also the complexity of the related partial realizations increase in that manner. This is another reason that we need effective algorithm for their computation. However, since in simulation studies to explore the function of  a metabolism-repair-replication model of our kind, the time-scales of P  and  ß  can be chosen slower than the time-scale of  f  (repair and replication are assumed to get active only after a certain number of time-steps of  f ) the increasing of the dimension-complexity of P and of  ß  should not cause a problem in computation.

4.1 Computation dynamical representations

From the standpoint of mathematical systems theory the maps f , P and ß are multivariable I/O functions and as such they have black-box character. To investigate their inners is for problem solving desirable. A favourable inner description is given by a state space representation in form by a linear system (F,G,H). With the associated dynamical system (( , () where (  denotes the global state transition function and (  is the output function, it is possible to compute stepwise in time the related I/O function. Dynamical systems have in science a long tradition and allow in many cases the application of a well established theory. This is especially true for the case of linear systems (F,G,H) and its related dynamical systems (( , (). This is what Casti means in his work when he states that with dynamical systems the results of Newtonian Science can be applied to models which are derived by Aristotles thinking [3]. We will try to give some directions of possible further research for our models of metabolism-repair-replication systems, which use this argument.

4.2 Application of the Rissanen Method of Partial Realization

The goal is to compute effectively a state space description for the metabolism-map f, for the repair-map P  and for the replication-map ß. To avoid the requirement of a finite-dimensionality condition for these maps (which is needed for the applicability of the Kalman-Ho algorithm) we use the partial realization method, as developed earlier by the work of Jorma Rissanen and Thomas Kailath [8],[9]. Since the method works identical for all three maps it is sufficient to show it for the case of the metabolism-map f . We know that f  is multivariable discrete-time real I/O function f : ((( where ( is the set of  m-variable input functions and  ( is the set of n-variable output functions. We know that the equation  (= f((), where ((( and  (((, can also be represented by  the equation ( = h ( (, where ( denotes the convolution operation and h is the impulse response of  f  . The impulse response h is a discrete time n(m matrix-valued function. Let ft, ht  denote the truncation of f and h, respectively, onto the interval [0,t) of N0. The partial realization method of Rissanen computes for each t( N0 on basis of  ht  an associated linear system (Ft,Gt,Ht) which realizes ft which means that the associated linear dynamical system ((t,(t)  computes from the zero-state x(0)=0 the function f up to the time t. The essential instrument for the computation is given by the Hankel-matrix Ht of  ht . The theory shows that a necessary condition such that for t( N0 a partial realization (Ft,Gt,Ht) is reached is that rank Ht = rank Ht+1.The dimension of the state space of (Ft,Gt,Ht) is then given by rank Ht. If there exists a t( N0 such that (Ft,Gt,Ht) = (Ft*,Gt*,Ht*) for all  t* ( t  then we have found a (full) realization of f . For more mathematical details we advise the reader to consult the original work of Rissanen and Kailath [8],[9]. The author has also discussed, how to develop the method partial realization of Rissanen on the basis of the algebraic theory of linear systems as developed by Rudolf Kalman [10].

4.3 Possible use of partial realizations in modelling metabolism-repair systems

John L. Casti explained in his work already possible applications of realizations and presented examples for demonstration by computation. Although our computational means, which are based on the implementation of the Rissanen algorithm as done by Dominik Jochinger [11], would allow to deal with very complex  collected data, we postpone such examples to a later time when actual data coming from biological investigations are available. We restrict us here to sketch some ideas of  possible applications of partial realizations.

4.3.1 Controllability and Observability

Each partial realization St  which is computed by the Rissanen algorithm is minimal in the sense that it is controllable and observable. An extension of the model of a biological cell would be to include also internal parts which are  non-controllable but observable, or controllable and not observable or non-controllable and non-observable.These inner parts,which are in general possible for any linear system (F,G,H), together with the controllable and observable part as derived by realization give the full picture in form of the so-called Kalman decomposition. It is most likely that such an extended version of the model could find interest in biological research.

4.3.2 Dynamic Error Correcting

The representation of a linear function by a dynamic realization (F,G,H) as this is made possible for the metabolism-map f , the repair-map P  and the replication- map ß allows an interpretation in terms of coding. Repair and Replication could be seen as a machinery similar to such with are known in the theory of error correcting codes, especially such in the field of convolution codes.

Coding theory and methods for error correction are highly developed and could stimulate biologist to apply in modeling metabolism-repair systems.

5. Conclusion

The paper addresses after a period of about twenty years the work of John L. Casti on metabolism repair and replication. After the discussion of some basic results of Casti we  extended the work of Casti by the application of the method of partial realization to get a dynamic machinery for the metabolism-map f , the repair map P and the replication map ß in form of associated linear system (F,G,H).For this we did not need to assume a finite dimensionality (in the sense of  the realization theory of  Kalman) of the I/O functions which define the model. Casti emphasized in his work the fact, that the construction of the metabolism-repair model is natural (in the sense of Mathematical Systems Theory). The positive of this approach might be that the model does not depend on ad hoc glued on mechanism. The negativa could be, that such a model might  structurally be far away what biologist observe by investigating repair- and replication mechanism in  praxis.
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