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Abstract

Jorma Rissanen developed in his papers [1],[2] a method to compute recursively for a matrix-valued data stream S of finite length the associated minimal linear system (=(F,G,H) which has S as its impulse response. The method of Rissanen is based on the fundamental algebraic theory of linear systems realization as developed earlier by the fundamental research in mathematical systems theory by the work of Rudolf Kalman [3],[4],[5]. In our presentation we  show how the Rissanen method of Hankel matrix decomposition can be applied to measure the linear complexity profile of vector-valued cryptographic data streams as it is applied in stream cipher testing. Our method generalizes the well known  Massey-Berlekamp algorithm which is applied in testing scalar-valued data streams. For this reason we call it the  “Rissanen algorithm”. Although the author has been familiar already for a long time with the realization theory of Kalman and contributed to the topic earlier [6], only recently the reported applicability in cryptographic testing of pseudorandom sequences has been found. The result presented here proves that  results of  mathematical systems theory and automata theory, which were developed nearly half a century ago by Rudolf Kalman, Jorma Rissanen, Michael Arbib and others are until today of scientific interest and can successfully be applied to solve engineering problem of todays interest. Jochinger [7] gives a report on the software implementation of the Rissanen Method of recursive Hankel matrix decomposition and the effective computation of partial linear systems, following [1] and [2]. A more detailed presentation of the topic discussed here, which includes also the discussion of the theory of   linear systems realization, has been given earlier by Pichler [8].

1. Linear complexity measures in cryptography

An important task in the design of  stream cipher devices is to measure the linear complexity profile of  the pseudo random sequences which are used in Vernam-like cryptographic systems for  mixing with the plaintext data stream. In the following we give a short description of  this task of taking measurements.
Let  SM=S(0),S(1),...,S(M-1)  denote a random sequence of length M with values in GF(q)p. The goal is to compute to SM an associated autonomous linear state machine ALFSM=(F,H) of minimal dimension which generates SM  from a certain initial state x(0).We then say ALFSM „realizes“ SM. 
Let n(M) denote the dimension of the state space of the ALFSM which realizes SM. The function L:N0(N0 which is given by L(M):=n(M) is called the linear complexity profile of the sequence S = S(0),S(1),S(2),.… The function L is not decreasing. It stays constant from a point M on if n(M)=n(M+1). Only in this case we have full knowledge of L. In cryptography it is desired to be able to compute L(M) for very long sequences SM.
The Massey-Berlekamp algorithmus [9] computes for scalar sequences S with values in GF(q) the linear complexity profile L. Since it is desired to  compute the linear complexity profile for a extremely long interval the computation has to be computational effective by a recursive procedure to compute L(M+1) from L(M) and S(M). The Massey-Berlekamp algorithm fulfil this.

The method used is based on polynomial presentation of sequences by the  D-transform (Laurent expansion of sequences) which is common in shift register theory. As a result the Massey-Berlekamp algorithm computes a realizing ALFSM which turns out in this case to be a autonomous linear feedback shift register ALFSR of minimal length n(M). Our goal is to provide for the computation of the linear complexity profile of vector-valued sequences SM over GF(q) a computational effective method. To reach this we discuss in the following shortly the method of linear realization as developed originally by the work of Rudolf Kalman [3],[4],[5].

         2. Computation of  a Linear System Realization

The algebraic theory of linear systems realizations deals with determination of a minimal linear system (=(F,G,H) for a given (observed) impulse response A:T(M(p(m).T denotes the time scale and M(p(m) is the set of matrices of size p(m over a field K. The  impulse response A can be interpreted as a multiple I/O experiment on ( .
If T=R (continuous time) and K=R, then ( is a linear differential system
if T=Z (discrete time) and K=R, ( is a linear difference system 

if T=Z (discrete time),and K=GF(q),we have for (  a linear finite state machine LFSM.

In the digital world of cryptography the interest has the case of linear finite state machines LFSM=(F,G,H). In this case the impulse response A of  ( is given by A=A(0),A(1),... where A(k) are matrices  with elements in GF(q).
It can be shown that the impulse response A of a discrete time linear system (=(F,G,H)  can generally be expressed by 

                                 A=(HG,HFG,HF2G,HF3G, ... )                      (1)

The linear system realization problem has the goal to determine a minimal linear system(F,G,H) which meets equation (1). For a solution of the linear realization problem we have at first to determine the state space Q of (. Let  f: U(Y denote the „zero state“ I/O function of  ( which assigns to each input function u with finite support („input word“) the associated output function y=f(u) („output word“).Then the state space Q of ( can be constructed by the  quotient space 

                                        Q=U/ker(f)                                              (2)

             3. Linear Partial Realizations

In case of the linear partial realization problem we have the task to determine (=(F,G,H) which generates  a impulse response of finite length M which is given by 

                                       AM=(A(0),A(1),...,A(M-1))                       (3) 

In this case  the I/O function f(N):U(N)(Y(N) is restricted to the set U(N) of input functions u and to the set Y(N) of output functions y of length N, respectively. The Hankel matrix H(N) of size N(N associated to (3) shows the values f(N)(eik) of the I/O function f(N) for the set of basis vectors eik (i=0,1,...,N-1, k=1,2,...,m) of U(N).
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It can be shown that the dimension n(M) of the state space Q  of the LFSM which realizes AM can be determined by n(M)=rank H(N) under the condition that we have  rank H(N)=rank H(N+1).

In the following we give the steps which are necessary to compute a partial linear realization. We follow in our discussion the method which is given by the textbook of Padulo-Arbib [10].
Since Q=U(N)/ker(f(N)) we derive from rank H(N)=n the result Q=Kn          
Let (={(1,(2,(3,...,(n} denote a basis for Q which we chose by taking n unit input functions (1,(2,...,(n which correspond to n linear independent rows f((i) of H(N).For any input function u we denote by [u] the representation of u by a column vector in the basis (. Then (i=[(i] for i=1,2,...,n. It can be shown that the matrices F,G,H of  the partial realization (  can be determined by  

F= [[(10],[(20],...,[(n0] ]

G= [[e1],[e2],...,[em]]                                                                (5)

H= [f(N)((1)(0),f(N)((2)(0),...,f(N)((n)(0)] 

((i0 denotes the input function of length N+1 which is given by concatenation of (i  with 0)  

        4. Determination of linear complexity measures by partial linear realization

The solution of the linear realization problem allows  a solution of the cryptanalytic problem of  section 1 in the following way: For m=1 (scalar input) the finite length impulse response AM of  a LFSM is a vector-valued sequence AM=(A(0),A(1),...,A(M-1)) with A(k)(GF(q)p  . We consider AM as  identical to a partial pseudorandom stream SM  by  AM=SM
. If  (=(F,G,H) is for AM the solution of the linear partial realization problem then (F,H) generates from the initial state x(0)=Ge the finite length sequence SM as output (e denotes the unit input word of length 1 which is given by e=1). Since G is in the case m=1 a column vector of length n, we get x(0)=G1=G. We see that the application of the method of linear partial realization determines for a given p-valued finite sequence SM  the minimal ALFSM=(F,H) and the initial state x(0)=G of the ALFSM.

This result seems is to our knowledge new in public cryptologic research. To get this result it was only necessary to know  the result of Kalman´s realization theory and to consider the (trivial) fact that the impulse response AM is defined only from time 1 on. By  time-invariance of  a linear system (  and by the fact that (=(F,G,H) operates with zero-input as the corresponding autonomous linear System ALFSM=(F,H) the above solution is rather trivial .

        5. Effective Computation of Linear Partial Realizations by the Method of Rissanen

Jorma Rissanen (IBM research CA and Stanford University, now with MDL-Research, Tampere, Finland, expert in „Statistical Modeling) developed in the late 1960´s for the computation of partial realizations an effective method to compute recursively stepwise by the length M of an observed impulse response AM  the associated linear partial realization (M=(FM,GM,HM) and also its dimension n(M).
The computation of (M+1 depends by the method of Rissanen only on the result (M and the last value A(M) of  AM+1. For the case of  a scalar impulse response this was shown by Rissanen in the paper [1]. For the more general matrix-valued case of impulse response, that is the case of multivariable I/O system (,  this method is discussed by Rissanen-Kailath [2].

For the author no implementation of the Rissanen method was available. Dominik Jochinger implemented by the request of the author the method which is reported in [7]. Since the application in cryptography was the main goal, the implementation was done for finite fields K=GF(q) such that a computed linear system (=(F,G,H) becomes a linear finite state machine LFSM. Examples of computation prove the necessary effectiveness which is required for determining linear complexity measures for realistic stream cipher data. In the future the Rissanen method will be included in  the already existing “Crypto Workbench” of  Dominik Jochinger and will serve there for applications in cryptography.

              6. Generalization of the Massey-Berlekamp Algorithm

Since the Rissanen method of partial linear realization is computational effective, which compares to the Massey-Berlekamp algorithm, it can be applied for the computation of the linear complexity profile L of a vector-valued random sequence S=S(0),S(1),S(2),…For the case of cryptographic testing as discussed in section 4 we call the Rissanen method Rissanen algorithm. The Rissanen algorithm generalizes for vector-valued sequences of data the Massey-Berlekamp algorithm. The above result has been reported in more detail in an earlier paper [8].              

7. Conclusion and Final Remarks

Modern cryptographic devices for fast stream cipher systems need pseudo random generators which generate vector-valued (Byte-oriented) sequences to be (-mixed with the plain text data to get the cipher text. For getting the linear complexity profile of  sequences by cryptographic testing the Rissanen algorithm can be applied. The Rissanen algorithm computes to a given vector-valued digital signal for „windows“ of length M (overlapping or non-overlapping) an associated set of parameters which are given by the matrices F,G,H of the linear system ( which allow a reconstruction of the signal. Other applications in data compression, signal classification and data coding seem to be possible. Australian outback-patents by Pichler-Kookaburra are in sincere consideration.

Of  systems theoretical interest would be the determination of a basis for the state space Q of the computed LFSM=(F,G,H) such that F becomes rational canonical form, which means that the LFSM consists of a parallel composition of autonomous LFSR´s.

This paper proves that  „classical“ topics of mathematical systems theory, such as the „Algebraic Theory of Linear Systems“ as developed by Rudolf Kalman and others have after nearly fifty years still the „power“ to lead to new applications of current interest. The „linear realization method“, which is a part of the theory, was originally developed for applications in control theory. I myself was interested in research and teaching linear systems realization some time ago [6],[12]. Today this method seems to be rather neglected in academic education.

By the family visit of the author during the (wet) summer 2008 at Forresters Beach, Central Coast, Australia, and with the valuable support of my fellow L. Kookaburra there, the here reported application was found [11]. As a work which comes  close to our results the paper [13] should be mentioned. There in connection with the Massey-Berlekamp algorithm reference to realization theory is given, however the authors seem to have not seen the possibility of a generalization to vector-valued sequences. 

I would like to thank Professor Jorma Rissanen, Tampere, Finland, for his interest in the paper and my former student Dominik Jochinger for his cooperation in implementing the Rissanen method.
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