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Abstract: The paper presents an application of the algelbheiary of linear systems realization as
originally established in mathematical systems mhday Rudolf Kalman to the problem of the
determination of the linear complexity profile gfseudo-random sequences as they appear in the
cryptanalyis of stream cipher systems. For the sszug effectiveness of the realization
computation the PQ- decomposition of Hankel masriaecording to the method of Rissanen is
used. The proposed new method of cryptanalysisrgkres the Massey-Berlekamp algorithmus to

the case of multi-variable sequences over GF(q).

Resumen: El trabajo presenta una aplicacién de la teddabsaica de la realizacion de sistemas
lineales, tal como se establecio originalmente a&erebria matematica de sistemas por Rudolf
Kalman, al problema de la determinacion del pedd complejidad lineal de secuencias
seudoaleatorias como aparecen en el criptoandlé&itos sistemas cifrados en cadena. Para la
necesaria efectividad de la realizacion se usar@atacion de la descomposicion PQ de matrices
de Hankel, de acuerdo con el método de Rissanemu&o método de criptoanalisis aqui
propuesto generaliza el algoritmo de Massey-Bentgkaara el caso de secuencias multivariable
sobre GF(q).

1INTRODUCTION

An important problem in cryptanalysis is to deterenfor a given stream of data
S=50),S@),S),...an associated autonomous linear finite state maadhit-SM=(F,H) and an
initial statex(0) of it, such that ALFSM generates frof{0) the data strear8 A similar problem is
to determine from a given observed impulse respfrs@0,A1,A2,....the corresponding linear
system2=(F,G,H). In mathematical systems theory this problem isrkmas the “realization
problem”. The mathematical basis for its solutispiovided by the important work of Rudolf
Kalman by his “Algebraic Theory of Linear Systenfkalman 1963], Kalman-Falb-Arbib

[1969]). A computational effective method for themputation of a minimal realization using the



concept of Hankel matrices has been developeddip&h and Ho ([Ho-Kalman 1966]. In
practical cases of cryptanalytic investigationsdhserved stream cipher data have a finite length
S(M)= S0).S@1),S@),...,SU-1). In systems theory this compares to a impulse resgp&(M)=

Ao, A1, A2,...,Au-1 of finite length. In this case we have the systéheoretical problem of “partial
realization”. A computational effective recursivetimod to solve the partial realization problem,
which applies even for very long data streak(el) has been originally developed by Jorma
Rissanen ([Rissanen 1971]). The method works fdinalar system2=(F,G,H) over a fieldK.

For the desired applications in the field of crypgy it is sufficient to assume that we deal with

linear systems over a finite fieKEGF(Qq).

In this paper we give first an introduction to tdgebraic theory of realization and to the Rissanen
method of partial realization. Then we show howRigsanen method can be applied to measure
the cryptanalytic quality of sequencg@V) as they appear in stream cipher applications. ihis
possible, since the solution of the partial regid@aproblem gives also a solution of the assodiate
state identification problem. For scalar data stre&(M) such measures are provided by the
Massey-Berlekamp algorithm, which is well knowrthe field of cryptanalysis. Our method by

applying the “Rissanen algorithm” extends this hssio multi-valued data strearS¢M).

2 ALGEBRAIC THEORY OF LINEAR SYSTEMSREALIZATION

2.1 Linear automata fundamentals

Let a linear finite state machine LFSM over thetériield K=GF(q) be given by LFSM=,G,H)
with the state transition given by(t+1) = F x(t) + G u(t) and associated outpy(t) by

y(t) = H x(t). F,GandH denote here matrices of sizen, nxm andpxn, respectivelyx(t) denotes
the state at time ti(t) andy(t) are the values of the input word and the output worg at timet,
respectively. A LFSM is a linear time-invariant chiste time system with the time Jetgiven by
the sefNo of natural numberblo= 0,1,2,.... It is convenient to write the input words and tutput
words of a LFSM as time functions of the kimdNo - K™ and y: No - KP with finite support such
that there exists for each input functioand each output functign numbersu/ and ¥/ ,such that
for all t>/u/ andt>/y/ we haveu(t)=0 andy(t)=0, respectively. For a given initial stat(d) and

input functionu the linear finite state machine LFSM computeslated state trajector/and

output functiory as follows:



X(t) = F 'x(0) +§Ft'i “'Gu@)  for t=1,2,../u/ (2.1)

i=0
and
y(t) = H x(t) for t=0,1,2,.../u/-1 (2.2)

Let U andY denote the set of all input functions of LFSM adeid) denote its state set.

For our purpose it is convenient to define for &Mrthe functiorM:Q xU - Y which assigns for

the initial stateg=x(0) and input functioru the related output functiopeM(x(0),u). By linearity of
LFSM we haveM(x(0),u) = M(x(0),0) + M(0,u) From the expression (2.1) and (2.2) we see that

t—

M(x(0),0)(t) = F'x(0), M(0,t)(0)=0 and M(O,u)®)=>" HF" *Gu() fort=1,2,../u/ (2.3)

1
i=0
M(x(0),0)is called thezero-input response functiai LFSM andM(0,u)is thezero- state response
function The specific output functioa of LFSM which is the zero- state response function
M(0,6), whereei denotes for=1,2,...,mthe unit impulse input function, is called tia@mpulse
response functianrhe matrix-valued functioa=(a1,a2,...,an) which is generated as output of
LFSM if we concatenate the different I/O-experinsdet,ai) is called thempulse response function
of the LFSM?

2.2 FSM machineidentification and FSM state identification

For our further discussion of the realization pesblwe repeat the following definitions from the
theory of finite state machines. A single I/O faiy) of a finite state machine FSislcalled a
single experiment set of single experiments is callech@altiple experimentThe problem to
determine for a given experiment the associatatéfgtate machine FSM is calledreachine
identification problemThe problem to determine from a given experintkatinitial state of the
FSM which generates the experiment is callsthge identification experiment

The theory of finite state machines offers a nundéepproaches to solve problems of machine

identification and state identification.

") observe that we distinguish between the impulggoreseA=A0,A1,A2,... as usually defined in systems theory and

the impulse response functiara(0),a(1),a(2),..as response of a linear system when started inetteestate by

performing a multiple experiment with the unit infges. For the expression of a in term#&\afie havea=0,A0,A1,A2,...



It is known that for the general case of finitestaachines the computation of a solution in
machine identification or in state identificatiaquires algorithm which a complexity depending
exponentially on the size of the state set. Focifipdinite state machines, however, such
algorithms can have a feasible complexity. Thal$® the case for a linear finite state machines
LFSM.

2.3 Thelinear system realization problem

The realization problem in linear system theorgiefined by the problem to determine for a given
impulse response functi@ra(0),a(1),a(2),... with a(t)=(a1(t),a2(t),...,an(t)) an associated
minimal linear systenfF,G,H). In our case the linear system is given by a LFSM w state space
Q=K" of minimal dimensiom. and each valua(t) is a matrix oveK=GF(q) of size pxm. In LFSM
theory the realization problem of linear system lbartonsidered as a machine identification
problem with a multiple experiment which is giventhe set/(et,a1),(e2,a2),...(en,am)/}. Let us

now determine the valuegt) of the impulse response functiamn terms of LFSM£-,G,H).

Sinceai=M(0,e) we get from (2.3)ai(0)=0 for i=1,2,...,mand therefora(0)=0.
If t>0 we havesi(t) = HF "'Ge for i=1,2,...,m. For the matriA(t) for t>0 we get

a(t) = [HF "'GalO HF "*Ge2...OHF "'Gen

If we represen® by its column vectors a6= [g10g2 O...| gm] we have
a(t) = [HF “g10HF “*ge0l..OHF "gm]  or also
a(t) = HF "'G . We see that the impulse response funaiofa LFSM=(F,G,H) can be written as

a=(0, HG, HFG, HEG, HFG, .... ) 4p.

With this result the linear system realization peoio can now be defined in pure algebraic terms as
the problem to determine for an observed impudspanse functioa (or equivalently for a given
impulse respons& ) matriceH,F,G ,whereF is minimal of the sizeaxn, which fulfil the equation
(2.4).



2.4 LFSM state identification

As pointed out in the introduction, state identfion by experiments is an important problem in
cryptanalysis. In the following we will show, hohet solution of the linear system realization
problem leads also to the solution of the assatist&te identification problem. Since we are
interested to solve the identification problem ad pf the cryptanalyis of stream ciphers, we can
assume that m=1 such that the impulse responstdarmchas values iiP .Let us assume that
LFSM=(F,G,H) is a linear realization of the impulse responsefiona=(0,a(1),a(2),... ) Then
the autonomous linear finite state machine ALESIMH) generates from stai€0) = Ge, wheree
is the unit impulse input functicgtNo — K which is given bye(0)=1 ande(t)=0 for t>0 the

output functionrSwith S(t)=a(t+1). This follows directly from the fact that a LFSMtime-
invariant.

This result gives us the following procedure fa thetermination of a ALFSM and the initial state

x(0) which generates as output a given vector-valuggubdunctionS=(S(0),S(1),S(2),.....:

2.5 definea by a=(0,5(0),S(1),S(2),... ) (2.5)
2.6determine the linear realization LFS¥F,G,H) of a

2.7 computex(0) by x(0)=Ge

2.8 the ALFSM given byF,H) generates from(0) the output functiors.

The theory of linear realization is an importanttgd linear system theory. In university courses,
however, the presentation of its algebraic fourmhatas developed mainly by the work of Rudolf
Kalman, is often neglected. For the conveniendb@feader we give in the following a short
introduction to the algebraic theory of linear syss realization. We specialize the theory, however,

to the case of LFSM realization.

2.5 Abstract approach to dynamical system realization

Letf: U - Y denote a function which assigns to each inputtfana:Z — K™ with finite support a
output functiony: Z —KP such thatu/=/y/. As an example the function f can be considescana
I/O function of a finite state machine FSM withixed initial state. We assume that f is time-
invariant in the following sense: Lat-t andy -t denote thé-shifted function ofi which are

given byu - t(7):= u(t+ 7) and y - t(7):=y(t+ 7). Then iff(u) = y we have for alt/Z f(u-t) =y -t.



Furthermore we assume that f is non-anticipattigt ineans that the values f(u)(t) are independent
from the values u(t") for tt.

In the theory of finite state machines two inputdtionsu andu* are called equivalent to each
other (~u*) if for all v/./U we havef(uv) = f(u*v). Hereuv andu*v denotes the concatenation of u
andu* with v which is given byv(t) = u(t) for allt with 0 <t < /u/ anduv(t) = v(t-/u/)for all t

with /u/ <t . The relation~ onU is a equivalence relation. The quotientdét , the set of
equivalence classew], consisting of all input functions” /7U which are equivalent ta/7U, can
serve as the state $@ff) of a discrete time dynamical systeXtf) =( U,Y,Q(f) #(f),Af) ) which is
able to realizé. 2(f) can be defined as follows: Because of the timerianae of f we can assume
that a input functionv which generates the stateg] [has for allt=0 the valued. The (global) state
transition functiong(f) of 2(f) can be defined by the functig#tf):NoxQ(f)xU - Q(f) with

#(F)(t,[w], u):=[wul[0,t] ] whereu is a input functionu:No-. K™ and u|[0,t] denotes the restriction of
u to the interval0,t] . The output functiof(f):Q(f) - KP of (f) is defined by R(f¢]):=f(w)(0).
Foru with /u/=1 (uis then basically a input lettaf0) of 2{f), we get forg(f) the (local) state
transition functiondf):Q(f) K™ — Q(f) which is given byeXf)([w],u(0)):=[wu(0).

2.6 Linear state machinerealization

In the case that the 1/O functiétJ - Y is linear, we are able to construct the stat€Qg¢Btof 5(f)

as the quotient spat#ker(f) of the linear spacd of input functions modulo the kernedr(f) of

the functionf. SinceU is a linear space, we can represent any inputibmeu by wu = wO(u) +
0(w)u,where0(u) andw(0) denotes a zero- input function of lendgduy and w(0Y, respectively.
The equality WwO(u) + w(0)d = [wO(u) + [w(0)u allows us to represent the (local) state traoisiti
function Jf) by Jf)([w],u(0)) = [wQ] + [u(0)]. If we denote by~(f),G(f) andH(f) the linear
operators which are given IByf):Q(f) — Q(f) with F(f)([w]):=[w0], by G(f):K™ - Q(f) with
G(f)(@):=[u(0)] and by H(f):Q(f) - K" with H(f)([w]:=f(w)(0) we have for*(f) the representation as
a linear state machine f) = ( F(f),G(f),H(f) )

2.7 Linear finite state machine realization
The next step is to make the necessary assumpti@ssure that the state sp&{é = U/ker(f)is

finite dimensional. This is the case if any st Q(f) can be represented by a linear

combination of finite many stateg,?,...,ch which form a basis foQ(f). Letui,u2,...,th denote a



set of input functions which generate this bagiss [ul], @ = [u2], ... ,ap = [un]. Then any statq
which is given byg = [u] can be represented iy = x1q1 + x202 + ... +xngn = x1[u1] + x2[u2] +
... xnfun] = [ xau1 + x2u2 + ... +xnun]. We see that anywith q = [u] can be represented by=
X1ul + X2u2 + ... +xnun whereui,u2, ... ,un is a set of input functions which generate a biasis
Q(f)=Ul/ker(f).

For the determination of input functionguz, ... ,un which have this property we proceed as
follows: Letel,e2, ... ,en denote again the unit impulse input functions lendor k=0,1,2,...and
i=1,2, ...,m.With ek wedenote th&-shifted version o& which is defined byeik(t):=ei(t+k) for
k=0,1,2,.. .Since the functionsik form a basis for the input functiarwhich generate the stateg [
of Q(f) it is evident that each state-generating inputtiona can be represented by a linear
combination of the functionsk. Therefor, to investigatier(f) it is of interest to investigate the
valuesf(eik) restrictedas functions defined dNo . Fork=0 we havesik=ei andf(e) = ai or for
(el,e2,...en) we have (f(e1),f(e2),...,f(en)) = (a1,a2,...,an) = a wherea is the impulse response
function a =(a(0),a(1),a(2),...)which was defined in section (2.1). F(eik) we get
(f(e1k),f(e2K),...,f(enk) =a —k=( a(k),a(k+1),a(k+2),...). For our purpose it is sufficient to deal
with a finite length impulse response function whis given by a(M)=(a(0),a(1),a(2),...
..,a(M-1)The matrixh(N) overK which is defined by the block matrix

[a(0)a(1)a@)a3)......cccceeveveennee. a(N-1)]
a(la()aR)a(4).....ccccccevvevrnnnns a(N)

(Y = | o , 2.6)
&N - Da(NaN+D)..........2(M 1)

is called a Hankel matrix of orddk The (finite) Hankel matrixi(N) as given by (2.6) provides the
data for the determination of the dimension n efstate spad®(f) of the realization LFSM which
generates as impulse response from its zero s@teutput sequenee=(a(0),a(1),a(2),...
..,a(M-1))If h(N) has a finite rank them = rank h(N)is valid. This can be seen as follows: If we
restrict the dimension of the input spa¢¢o dim U=M then any input function has lengtiv and
can be represented by a linear combination oféhefdvl unit impulse input functionak, with
i=1,2,...,m andk=0,1,2,...,N-IwhereN= (M+1)/2. Since foreik the valueg(eik) are given by the
rows ofh(N) the dimensiorK of the kernel spadeer(f) is given byM minus the rank ofi(N);

K= M - rank h(N).For the state spacg(f) =U/ker(f) we havedim Q(f) = dim U — dim ker(for

dim Q(f) = M — K or for rankh(N)=n we getdim Q(f)= M-(M-n) = n.



This result offers also the computational meangHerconstruction of a basisS={£,£,83,....n}
of the state spad@(f)=K" of (f) as follows: As basis vecto&we choose the statéis| 4]
whered are chosen from the set of unit impulse functiekhsuch that the set of rovieik) of h(N)

consists of linear independent elements. In gerleeaé are several ways to choose the hasis

With the results of section 2.6 and the consionobf a basis for the state space by means of the
function f and the Hankel matrix(N) we are able to determine the linear operdtdisG(f) and

H(f) of Z{f) in matrix form. From section (2.6) we have theuttss

FOW)= w0, G(A)(UO)F[u@) , HO(W)=f(w)(0) (2.7)

wherewU, u(0)JK™ ande = (e, e,...,&n). Since we interpretf] here as the state &ff) at time0
the input valuau(0) appears also at tinfesuch thad(w) has to be considered as the empty word
of length0, so thaiG(f)(u(0))=[u(0)] . As usual we use the notatianF,G,H for 2(f),F(f),G(f)
andH(f), respectively.

(1) Determination of:
For thenxn matrix En= [[&1] |[&2] |...|[&n]] constructed by the basis vectors of the stptes
of Swe haveF[[&l]l[£]]...|[a]] =[[&0]l[£0]]...|[a0]] . With basis= the matrixEn is the

unit matrix and we have the result

F=[[ £10] | [£20] | ... [ nO]] (2.8)

(2) Determination ofG:
We take as input values to be processe® liye value®1(0),e2(0),...,en(0) and form the
mxm matrix Em= [ e1(0)|e2(0)! ... | em(0)] . By (2.7) we haveS[ e1(0)| e2(0)! ... |em(0)]=

[[e1]l[e2]]...|[em]]. SinceEmis a unit matrix we have as result

G=¢1) [e2] | ... | [em]]. (2.9)



(3) Determination oH:
ForH we have from (2.7)H([w]=f(w)(0). For the states&]],[ £], ...,[&n] which form the basis of
the state spad®@=K™ have H[[ &1]|[£2]| ...|[an]] =[f(£2)(0) | f(£2)(0) | ... | f(&n)(0)]. Since

[[&]l[&]] ...|[&n]] is the unit matrix we have the result

H=[f(1)(0) | f(£2)(0) | .... | f(&n)(O)]. (2.10)

With the result as shown in (2.8)-(2.10) we aredbldetermine for a given impulse response
functiona=(0,a(1),a(2),...a(M-1)( or equivalently for a given impulse response

A=(A0,A1,A2, ...,Av-1) ) of lengthM of a multi-variable “blackbox” over a finite field with m

“input ports” andp “output ports” by means of the Hankel-(block)mati(N) of sizeN a linear
finite state machine LFSM given 3=(F,G,H) which generate8 as its impulse response. The
realizationZ is minimal, the dimension n of the state spacrirsmal and its states are controllable

and observablé,

The approach of this chapter follows mainly thekon “System Theory” of Louis Padulo and
Michael A. Arbib [ Padulo-Arbib 1974, chapter 8-Belated work, with emphasis on general
systems aspects, has been published by the atticbidr 1974],[Pichler 1976]. The fundamental
theory for this approach of solving the realizatproblem is due to the research results in
mathematical systems theory by Rudolf E. Kalmanii&n1963],[Kalman-Falb-Arbib 1969].
Computational aspects have been considered by i&alman [Ho-Kalman 1966] and J. Rissanen
[Rissanen 1971],[Rissanen-Kailath 1972]. In thetrdwapter we discuss the contributions of J.

Rissanen for the effective computation of realasi

*) the usual approach in systems theory is to make U of the Hankel matrit(N) of orderN which is constructed

by the valuesAo,A1,A2,....,A1-1 of the impulse responge This is possible since by the time invarianckEsM we

have alwaysank h(N) = rank H(N).In the following we will also make use BI{N).



3. RISSANEN PQ-DECOMPOSITION OF HANKEL MATRICES

Jorma Rissanen introduced in his important papgeissfnen 1971] and [Rissanen —Kailath 1972]
an effective method to decompose recursively syesidp a sequence of Hankel matrices
H(1),H(2),H(3),..which are generated by a associated sequencepmiflseresponses
A(1),A(2),A(3,..0of increasing lengtM(1),M(2),M(3),...If at a stegk the Hankel matribH(K) is
reached and the associated realizalios(Fk,Gk,Hk) is determined,the method of Rissanen allows
the computation oH(k+1) and 2k+1 =(Fk+1),Gk+1),Hk+1)) at stefk+1 by keeping the results of
stepk. At each step the Rissanen method provides a dezsition of the fornmH(n,N)=P(n)Q(n,m)
whereH(n,N) consists ofn linear independent scalar rows of the Hankel im#&t(N) andP(n)is a
lower triangular scalar matrix of dimensiomn. If rank H(N)=rank H(N+1) the columns oP(n)

can be taken as basis vectors for the state €paké of the associated realization. The matrices
F,G, andH of the realization can be effectively derived fr&xm) andQ(n,m).The effectiveness of
the method of Rissanen for the computation of zaéibns is crucial for our further discussionsit i
outside of the scope of this paper to discussgr@ater detail . The reader is at advised to donsu
the existing original publications. For the fut@reomplete algorithmic description and a software
implementation of the Rissanen algorithmus for @gibns in the field of cryptanalysis is in

preparation.

4 CRYPTANALYTIC MEASURES FOR STREAM CIPHER DATA

Stream ciphers are based on pseudo random gerselP&RG which generate from a initial sta(@)
(which contains information on the cryptographig keuse) a key sequen8eS(0),S@),Se@),.....

In many practical cases of PRG’s the value sdtekey sequenc®is given by the finite field
GF(2). However today in modern PRG’s for fast secure tlatsmission als(GF(2))" and more
generaK™=(GF(q))™is of interest. In practical applications onlfirite partS(M)=
S0),S0),Se),...,.S¢-1) of lengthM is available for cryptanalysis. The finite striBgM) can have
been derived from a successful “known plain tetack’ or by a “chosen plain text attack” by
inversion of the mixing operation of the streamhepsystem. Also the direct observation of the
key stream of the PRG is a possibility. For a datigequenc8 there is the cryptanalytic problem
to determine a possible structure of the PRG andtfe determination of the used key. By
technological reasons it can be assumed that tiied?fhe stream cipher system can be modelled

by a autonomous finite state machine AFSM. By assgm finite state machine model the



problem of finding the structure of the PRG and {be key in use is seen as the problem of
machine identification and (or) state identificati@s discussed in section (2.2).

The solution of both problems together with thelgbemn of the determination of the cardinality of
the state sa of the ALFSM are seen in cryptanalysis as compyaxieasures for the key sequence
S The measure which computes for a given sequ8tioe cardinality of the state 9@tis known as
the Chaitin-Kolmogoroff complexity db. For the general case of autonomous finite statehmes
the implementations of such measures are compuoétitifficult and practical infeasible. However,
for specific classes of AFSM’s effective methodstifi@ implementations of the measures might be
derived. One such class is given by the class tolhamous linear finite state machines ALFSM.
For the case of scalar-valued sequelses0),s(1),5@),s@),... with s()/ GF(2) ors(i).GF(q) the
Massey- Berlekamp algorithmus provides an effeatmnethod to derive from a finite strirfg(M) of

Sa autonomous linear feedback shift register ALFSvhmimal lengthn(M) and an associated
initial statex(0) which generateS(M)form statex(0). The functionL:No — No which computes for

a given scalar-valued sequergdor any stringS(M) of it the minimal lengtim(M) of the realizing
ALFSM has been called in cryptanalysis the lineanplexity profile ofS.We see that the Massey-
Berlekamp algorithmus solves for the analysis afacstream cipher data the machine

identification problem, the state identificatioroptem and also the linear complexity problem.

Our goal is, to solve such problems also for thee ez vector-valued stream cipher data S. The
principal approach which we take has been alreatlined in chapter 1 of this paper. The technical
details for it are provided by the content of cleaf@ and chapter 3 of this paper. Therefor werare i

the position to describe the method, which we eall the “Rissanen algorithmus” by its main steps

Rissanen algorithmus for the computation of cryptanalytic linear measures

Assume that a key sequer8eS(),S(),Se),... has been observed. Then we are able to perform for

each finite strings(M) of lengthM the following two steps:

Step 1:.we consider the strin§(M)=S0),S@),S¢),...,Si-1) asthe impulse responggM) of a
LFSM. The associated impulse response funcéias response of a LFSM from the zero state is
then given bya=0,50),S@),S¢),...,S¢-1). Application of the realization method of chaptegiZes
by means of the Hankel matritkN) of rankn the associated linear finite state machinéy

>=(F,G,H) with state spac®=K" . The computation of requires tha(N+1) has also rank.



Step 2:.we consider now the given striggM)= S0),S@),Se@),...,S#-1) of the key sequencgas the
output word of the autonomous linear finite statechine ALFSN:(F,H) with initial statex(0)
which is given by (0)=Gewheree is the (scalar) unit impulse input function givgne(0)=1and
e(t)=0 for t>0.

Increasing recursively the lengthof the key sequence for M=1,2,3,4,..we reach bytep 1lthe
associated Hankel matriceigl),H(2),H(3),...and the associated LFSM'X1), 2(2), 2(3),...and
the associated sequengd), n(2), n(3),.indicating the dimension of the associated staaeep
Q(1), Q(2), Q(3),....By increasing the lengtil of the key stringS(M) and having the results of
step 1we determine bgtep 2the associated autonomous linear finite state mash

(F(1),G(1)), (F(2),G(2)), (F(3),G(3))... and the associated initial stai€$)(0), x(2)(0), x(3)(0),....
To have an effective method for the stepwise coatpirt of the realization&(1), 2(2), 2(3),..the
Rissanen method for establishing a PQ-decompasiti Hankel matrices of chapter 3 has to be

applied.

The Rissanen algorithmus, which is described abaileys for even very large observed key
streams the effective computation of linear crigptgtic measures, such as given by linear state
machine identification, initial state identificati@nd determination of the linear complexity. Since
the key streams are allowed to have values initleard spac&™ with m>1 the Rissanen
algorithmus generalizes the cryptanalytic methadsided by the Massey- Berlekamp

algorithmus.

5 CONCLUDING REMARKS

The paper presents with the Rissanen algorithrmesvamethod for taking linear measures of
vector-valued data as they appear in stream cipdpefihe theoretical basis for this method is
provided by the theory of linear system realizagsrdeveloped as part of mathematical systems
theory by Rudolf Kalman. For the practical applicatin the context of cryptanalyis the Rissanen

method for recursive identification of linear syaehas been proven as essential.

The result of this paper generalizes the methdoheérization as developed by Massey and
Berlekamp which was originally developed in theottysof BCH-codes [Massey 1967],[Berlekamp
1968]. Jonckheere and Ma investigated the Massegienp algorithmus from the point of view



of linear systems realization but did not deahwite possible more general case of our paper
[Jonckheere-Ma 1989].Our presentation made udeeatisting classical theory of linear finite
state machine . A deeper structural knowledge atealizations could be achieved by taking the R-
module approach in the theory of algebraic lingatesns as developed by Kalman . A further goal
of research could be the investigation of a posgiliect effective computation of realizationstsuc
that the structure o2=(F,G,H) becomes a parallel coupling of linear feedback sbgisters. The
matrix F is then of rational canonical form. We hope that paper can show that the results of
mathematical systems theory, as developed mairthei50’s of the last century, have until today

some importance for practical applications in madepics of engineering.
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