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Abstract: The paper presents an application of the algebraic theory of linear systems realization as 

originally established in mathematical systems theory by Rudolf Kalman to the problem of  the 

determination of the linear complexity profile of  pseudo-random sequences as they appear in the 

cryptanalyis of stream cipher systems. For the necessary effectiveness of the realization 

computation the PQ- decomposition of Hankel matrices according to the method of Rissanen is 

used. The proposed new method of cryptanalysis generalizes the Massey-Berlekamp algorithmus to 

the case of multi-variable sequences over GF(q). 

 

Resumen: El trabajo presenta una aplicación de la teoría algebraica de la realización de sistemas 

lineales, tal como se estableció originalmente en la teoría matemática de sistemas por Rudolf 

Kalman, al problema de la determinación del perfil de complejidad lineal de secuencias 

seudoaleatorias como aparecen en el criptoanálisis de los sistemas cifrados en cadena. Para la 

necesaria efectividad de la realización se usa la computación de la descomposición PQ de matrices 

de Hankel, de acuerdo con el método de Rissanen. El nuevo método de criptoanálisis aquí 

propuesto generaliza el algoritmo de Massey-Berlekamp para el caso de secuencias multivariable 

sobre GF(q). 

 

1 INTRODUCTION 

 
An important problem in cryptanalysis is to determine for a given stream of data 

S=S(0),S(1),S(2),….an associated autonomous linear finite state machine ALFSM=(F,H) and an 

initial state x(0) of it, such that ALFSM generates from x(0) the data stream S. A similar problem is 

to determine from a given observed impulse response A= A0,A1,A2,…. the corresponding linear 

system Σ=(F,G,H). In mathematical systems theory this problem is known as the “realization 

problem”. The mathematical basis for its solution is provided by the important work of Rudolf 

Kalman by his “Algebraic Theory of Linear Systems” ([Kalman 1963], Kalman-Falb-Arbib 

[1969]). A computational effective method for the computation of a minimal realization using the 



concept of  Hankel matrices has been developed by Kalman and Ho ([Ho-Kalman 1966]. In 

practical cases of cryptanalytic investigations the observed stream cipher data have a finite length  

S(M)= S(0),S(1),S(2),…,S(M-1). In systems theory this compares to a impulse response A(M)= 

A0,A1,A2,…,AM-1  of finite length. In this case we have  the systems-theoretical problem of  “partial 

realization”. A computational effective recursive method to solve the partial realization problem, 

which applies even for very long data streams A(M) has been originally developed by Jorma 

Rissanen ([Rissanen 1971]). The method works for all linear systems Σ=(F,G,H) over a field K.  

For the desired applications in the field of cryptology it is sufficient to assume that we deal with 

linear systems over a finite field K=GF(q). 

 

In this paper we give first an introduction to the algebraic theory of realization and to the Rissanen 

method of partial realization. Then we show how the Rissanen method  can be applied to measure 

the cryptanalytic quality of sequences S(M) as they appear in stream cipher applications. This is 

possible, since the solution of the partial realization problem gives also a solution of the associated 

state identification problem. For scalar data streams S(M) such measures are provided by the 

Massey-Berlekamp algorithm, which is well known in the field of cryptanalysis. Our method by 

applying the “Rissanen algorithm” extends this results to multi-valued data streams S(M). 

 

2 ALGEBRAIC THEORY OF LINEAR SYSTEMS REALIZATION 

 
2.1 Linear automata fundamentals 

 

Let a linear finite state machine LFSM over the finite field K=GF(q) be given by LFSM=(F,G,H) 

with the state transition given by  x(t+1) = F x(t) + G u(t)  and associated output  y(t)  by  

 y(t) = H x(t). F,G and H denote here matrices of size n×n, n×m and p×n, respectively. x(t) denotes 

the state at time t, u(t) and y(t) are the values of the input word  u  and the output word y at time t, 

respectively. A LFSM is a linear time-invariant discrete time system with the time set T  given by 

the set N0 of natural numbers N0=  0,1,2,… . It is convenient to write the input words and the output 

words of a LFSM as time functions of the kind u: N0 →→→→ Km   and  y: N0 →→→→ Kp  with finite support such 

that there exists for each input function u and each output function y  numbers /u/ and /v/ ,such that 

for all t>/u/ and t>/y/ we have u(t)=0 and y(t)=0, respectively. For a given initial state x(0) and 

input function u  the linear finite state machine LFSM computes a related state trajectory x and 

output function y as follows: 
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F t-i –1Gu(i)        for  t=1,2,…/u/                                           (2.1) 

and 

                         y(t) = H x(t)    for  t=0,1,2,…/u/-1                                                                   (2.2) 

 

Let U and Y denote the set of all input functions of LFSM and let Q denote its state set. 

For our purpose it is convenient to define for a LFSM the function M:Q×U→Y which assigns for 

the initial state q=x(0) and input function u the related output function y=M(x(0),u). By linearity of 

LFSM we have M(x(0),u) = M(x(0),0) + M(0,u) . From the expression  (2.1) and (2.2) we see that 

M(x(0),0)(t) = F tx(0) ,  M(0,t)(0)=0   and   M(0,u)(t) =∑
−

=

1

0

t

i

HFt-i –1Gu(i)  for t=1,2,…/u/          (2.3)                                            

M(x(0),0) is called the zero-input response function of LFSM and M(0,u) is the zero- state response 

function. The specific output function ai of LFSM which is the zero- state response function 

M(0,ei), where ei denotes for i=1,2,…,m the unit impulse input function, is called the ei-impulse 

response function. The matrix-valued function a=(a1,a2,…,am) which is generated as output of  

LFSM if we concatenate the different I/O-experiments (ei,ai) is called the impulse response function  

of  the LFSM.*) 

 

2.2  FSM machine identification and FSM state identification 

 

For our further discussion of the realization problem we repeat the following definitions from the 

theory of finite state machines. A single I/O pair (u,y) of  a finite state machine FSM is called a 

single experiment, a set of single experiments is called a multiple experiment. The problem to 

determine for a given experiment the associated finite state machine FSM is called a machine 

identification problem. The problem to determine from a given experiment the initial state of the 

FSM which generates the experiment is called a state identification experiment.  

 

The theory of finite state machines offers a number of approaches to solve problems of machine 

identification and state  identification.  
___________________________________ 

*) observe that we distinguish between the impulse response A=A0,A1,A2,…  as usually defined in systems theory and 

the impulse response function a=a(0),a(1),a(2),… as response of a linear system when started in the zero state by 

performing a multiple experiment with the unit impulses. For the expression of a in terms of A we have a=0,A0,A1,A2,… 

. 

 



It is known that for the general case of finite state machines the computation of a solution in 

machine identification or in state identification requires algorithm which a complexity depending 

exponentially on the size of the state set. For specific finite state machines, however,  such 

algorithms can have a feasible complexity. This is also the case for a linear finite state machines 

LFSM. 

 

2.3 The linear system realization problem 

 

The realization problem in linear system theory is defined by the problem to determine for a given 

impulse response function a=a(0),a(1),a(2),…  with a(t)=(a1(t),a2(t),…,am(t))  an associated 

minimal linear system (F,G,H). In our case the linear system is given by a LFSM with a state space  

Q=Kn of minimal dimension n. and each value a(t) is a matrix over K=GF(q) of size p×m. In LFSM 

theory the realization problem of linear system can be considered as a machine identification 

problem with a multiple experiment which is given by the set {(e1,a1),(e2,a2),…(em,am)}. Let us 

now determine the values a(t) of  the impulse response function a in terms of LFSM=(F,G,H). 

 

Since ai=M(0,ei)  we get from (2.3)  ai(0)=0 for i=1,2,…,m and therefore a(0)=0. 

If t>0 we have ai(t) = HF t-1Gei  for i=1,2,…,m. For the matrix A(t) for t>0 we get  

 

a(t) = [HF t-1Ge1 HF t-1Ge2... HF t-1Gem] 

 

If  we represent G by its column vectors as  G= [g1 g2 …gm]   we  have  

 a(t) = [HF t-1g1 HF t-1g2... HF t-1gm]     or also 

a(t) = HF t-1G . We see that the impulse response function a of a LFSM=(F,G,H) can be written as 

 

                                  a = ( 0, HG, HFG, HF2G, HF3G, ….  )                                                  (2.4) 

 

With this result the linear system realization problem can now be defined in pure algebraic terms as 

the problem to  determine for an observed impulse response function a (or equivalently for a given 

impulse response A ) matrices H,F,G ,where F is minimal of the size n×n, which fulfil the equation 

(2.4). 

 

 

 



2.4  LFSM state identification 

 

As pointed out in the introduction, state identification by experiments is an important problem in 

cryptanalysis. In the following we will show, how the solution of the linear system realization 

problem leads also to the solution of the associated state identification problem. Since we are 

interested to solve the identification problem as part of the cryptanalyis of stream ciphers, we can 

assume that m=1 such that the impulse response function a has values in Kp .Let us assume that 

LFSM=(F,G,H) is a linear realization of the impulse response function a=(0,a(1),a(2),… ) . Then 

the autonomous linear finite state machine ALFSM=(F,H) generates from state x(0) = Ge ,  where e 

is the unit impulse input function e:N0 → K  which is given by  e(0)=1 and e(t)=0 for t>0 the 

output function S with S(t)=a(t+1). This follows directly from the fact that a LFSM is time-

invariant. 

This result gives us the following procedure for the determination of a ALFSM and the initial state 

x(0) which generates as output a given vector-valued output function S=(S(0),S(1),S(2),…..: 

 

2.5 define a by a=(0,S(0),S(1),S(2),… )                                                                     (2.5) 

2.6 determine the linear realization  LFSM=(F,G,H) of  a 

2.7 compute x(0) by x(0)=Ge 

2.8 the ALFSM given by (F,H) generates from x(0) the output function S. 

 

The theory of linear realization is an important part of linear system theory. In university courses, 

however, the presentation of its algebraic foundation, as developed mainly by the work of Rudolf 

Kalman, is often neglected. For the convenience of the reader we give in the following a short 

introduction to the algebraic theory of linear systems realization. We specialize the theory, however, 

to the case of  LFSM realization. 

 

2.5  Abstract approach to dynamical system realization 

 

Let f: U→Y denote a function which assigns to each input function u:Z→Km with finite support a 

output function y: Z→Kp  such that /u/=/y/. As an example the function f can be considered as an 

I/O function of a finite state machine FSM with a fixed initial state. We assume that f is time-

invariant in the following sense: Let u→t  and y→t  denote the t-shifted function of u which are 

given by u→t(τ):= u(t+ τ) and  y→t(τ):=y(t+ τ). Then if f(u) = y we have for all t∈Z  f(u→t) = y→t. 



Furthermore we assume that f is non-anticipatory, that means that the values f(u)(t) are independent 

from the values u(t´) for  t´>t. 

In the theory of finite state machines two input functions u and u* are called equivalent to each 

other (u~u*) if for all v∈U we have f(uv) = f(u*v). Here uv and u*v denotes the concatenation of u 

and u* with v which is given by uv(t) = u(t)  for all t with 0 ≤ t < /u/  and uv(t) = v(t-/u/) for all t 

with /u/ ≤ t . The relation  ~ on U is a equivalence relation. The quotient set U/~ , the set of 

equivalence classes [w] , consisting of all input functions w´ ∈ U which are equivalent to w∈ U, can 

serve as the state set Q(f) of a discrete time dynamical system Σ(f) =( U,Y,Q(f),ϕ(f),β(f) ) which is 

able to realize f. Σ(f) can be defined as follows: Because of the time-invariance of f we can assume 

that a input function w which generates the state [w] has for all t≥0 the value 0. The (global) state 

transition function ϕ(f) of  Σ(f) can be defined by the function ϕ(f):N0×Q(f)×U →Q(f) with 

ϕ(f)(t,[w],u):=[wu|[0,t] ] where u is a input function u:N0→ Km  and  u|[0,t]  denotes the restriction of 

u to the interval [0,t]  . The output function ß(f):Q(f)→Kp  of  Σ(f) is defined by ß(f)([w]):=f(w)(0).           

For u with /u/=1 ( u is then basically a input letter u(0) of Σ(f), we get for ϕ(f) the (local) state 

transition function δ(f):Q(f)×Km→Q(f) which is given by δ(f)([w],u(0)):=[wu(0)]. 

 

2.6  Linear state machine realization 

 

In the case that the I/O function f:U→Y is linear, we are able to construct the state set Q(f) of Σ(f) 

as the quotient space U/ker(f) of the linear space U of input functions modulo the kernel ker(f) of 

the function f. Since U is a linear space, we can represent any input function wu by wu = w0(u) + 

0(w)u, where 0(u) and w(0) denotes a zero- input function of length /0(u)/ and /w(0)/, respectively. 

The equality [w0(u) + w(0)u] = [w0(u)] + [w(0)u] allows us to represent the (local) state transition 

function δ(f) by δ(f)([w],u(0)) = [w0] + [u(0)]. If we denote by F(f),G(f) and H(f) the linear 

operators which are given by F(f):Q(f)→Q(f) with F(f)([w] ):=[w0], by G(f):Km→Q(f) with 

G(f)(a):=[u(0)] and by  H(f):Q(f)→Kp  with H(f)([w]:=f(w)(0) we have for Σ(f) the representation as 

a linear state machine by Σ(f) = ( F(f),G(f),H(f) ) 

 

2.7 Linear finite state machine realization 

 

The next step is to make the necessary assumptions to assure that the state space Q(f) = U/ker(f) is 

finite dimensional. This is the case if any state q of  Q(f)  can be represented by a linear 

combination of finite many states q1,q2,…,qn which form a basis for Q(f). Let u1,u2,…,un denote a 



set of input functions which generate this basis; q1 = [u1], q2 = [u2], … ,qn = [un]. Then any state q 

which is given by q = [u] can be represented by  q = x1q1 + x2q2 + … +xnqn  =  x1[u1] + x2[u2] + 

… +xn[un] = [ x1u1 + x2u2 + … +xnun]. We see that any u with q = [u] can be represented by u = 

x1u1 + x2u2 + … +xnun  where u1,u2, … ,un is a set of input functions which generate a basis for 

Q(f)=U/ker(f). 

For the determination of  input functions u1,u2, … ,un  which have this property we proceed as 

follows: Let e1,e2, … ,em  denote again the unit impulse input functions and let for k=0,1,2,… and 

i=1,2, …,m .With eik  we denote the k-shifted version of ei which is defined by  eik(t):=ei(t+k) for 

k=0,1,2,.. . Since the functions eik form a basis for the input function u which generate the states [u] 

of Q(f)  it is evident that each state-generating input function u can be represented by a linear 

combination of the functions eik. Therefor, to investigate ker(f) it is of interest to investigate the 

values f(eik) restricted  as functions defined on N0 . For k=0 we have eik=ei and f(ei) = ai  or for  

(e1,e2,…em)  we have  (f(e1),f(e2),…,f(em)) = (a1,a2,…,am) = a where a is the impulse response 

function    a =( a(0),a(1),a(2),…). which was defined in section (2.1). For f(eik) we get  

(f(e1k),f(e2k),…,f(emk)) =a →k=( a(k),a(k+1),a(k+2),… ). For our purpose it is sufficient to deal 

with a finite length impulse response function which is given by   a(M)=(a(0),a(1),a(2),…                

..,a(M-1).The matrix h(N) over K which is defined by the block matrix 
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is called a Hankel matrix of order N. The (finite) Hankel matrix h(N) as given by (2.6) provides the 

data for the determination of the dimension n of the state space Q(f) of the realization LFSM which 

generates as impulse response from its zero state the output sequence a=(a(0),a(1),a(2),…            

..,a(M-1)).If h(N) has a finite rank then n = rank h(N) is valid. This can be seen as follows: If we 

restrict the dimension of the input space U to dim U=M then any input function u has length M and 

can be represented by a linear combination of the set of M unit impulse input functions eik, with 

i=1,2,…,m  and k=0,1,2,…,N-1 where N= (M+1)/2. Since for eik the values f(eik) are given by the 

rows of h(N) the dimension K of the kernel space ker(f) is given by M minus the rank of h(N);                         

 K= M - rank h(N). For the state space Q(f) =U/ker(f) we have dim Q(f) = dim U – dim ker(f)  or 

dim Q(f) = M – K  or for rank h(N)=n we get dim Q(f)= M-(M-n) = n.  



 

This result offers also the computational means for the construction of a basis Ξ ={ξ1,ξ2,ξ3,…,ξn} 

of the state space Q(f)=Kn of  Σ(f) as follows: As  basis vectors ξi we choose the states ξi=[εi]  

where εi are chosen from the set of unit impulse functions eik such that the set of rows f(eik) of h(N) 

consists of linear independent elements. In general there are several ways to choose the basis Ξ. 

 

With the results of  section 2.6 and  the construction of a basis for the state space by means of the 

function f and the Hankel matrix h(N) we are able to determine the linear operators F(f),G(f) and 

H(f) of Σ(f) in matrix form. From section (2.6) we have the results 

 

                   F(f)([w])= [w0]  , G(f)(u(0))=[u(0)] , H(f)([w])=f(w)(0)                                          (2.7) 

 

where w∈U, u(0)∈Km  and e = (e1,e2,…,em). Since we interpret [w] here as the state of Σ(f) at time 0 

the input value u(0) appears also at time 0 such that 0(w) has to be considered as the empty word Λ 

of length 0, so that G(f)(u(0)) = [u(0)] .  As usual we use the notation Σ, F,G,H  for Σ(f),F(f),G(f) 

and H(f), respectively. 

 

(1) Determination of F: 

For  the n×n matrix En=  [[ε1] [ε2] …[εn]]  constructed by the basis vectors of the state space     

of  Σ we have  F[[ε1][ε2]…[εn]]  = [[ε10][ε20]…[εn0]] . With basis Ξ  the matrix En is the 

unit matrix and we have the result  

 

                                  F=[[ε10][ε20]…[εn0]]                                                                        (2.8) 

 

(2) Determination of G: 

We take as input values to be processed by G the values e1(0),e2(0),…,em(0) and form the 

m×m matrix Em= [ e1(0)e2(0)…em(0)] . By (2.7) we have G[ e1(0)e2(0)…em(0)]=                     

[ [e1][e2]…[em]]. Since Em is a unit matrix we have as result 

 

                                  G=[ [e1][e2]…[em]].                                                                          (2.9) 

 

 

 



(3) Determination of H: 

For H we have from (2.7)  H([w]=f(w)(0). For the states  [ε1],[ε2], …,[εn] which form the basis of 

the state space Q=Km  have  H[[ε1][ε2] …[εn]] =[ f(ε1)(0)f(ε2)(0)…f(εn)(0)]. Since 

[[ε1][ε2] …[εn]] is the unit matrix we have the result 

 

                                  H=[f(ε1)(0)f(ε2)(0)…f(εn)(0)].                                                        (2.10) 

 

 

With the result as shown in (2.8)-(2.10) we are able to determine for a given impulse response 

function a=(0,a(1),a(2),…a(M-1)  ( or equivalently for a given impulse response 

A=(A0,A1,A2, …,AM-1) ) of length M of a multi-variable “blackbox” over a finite field K with m 

“input ports”  and p “output ports”  by means of the Hankel-(block)matrix h(N) of size N a linear 

finite state machine LFSM given by Σ=(F,G,H) which generates A as its impulse response. The 

realization Σ is minimal, the dimension n of the state space is minimal and its states are controllable 

and observable. *) 

 

The approach of this chapter follows mainly the book on “System Theory” of Louis Padulo and 

Michael A. Arbib [ Padulo-Arbib 1974, chapter 8-2]. Related work, with  emphasis on general 

systems aspects, has been published by the author [Pichler 1974],[Pichler 1976]. The fundamental 

theory for  this approach of solving the realization problem is due to the research results in 

mathematical systems theory by Rudolf E. Kalman [Kalman1963],[Kalman-Falb-Arbib 1969]. 

Computational aspects have been considered by Ho and Kalman [Ho-Kalman 1966] and J. Rissanen 

[Rissanen 1971],[Rissanen-Kailath 1972]. In the next chapter we discuss the contributions of J. 

Rissanen for the effective computation of realizations. 

 

_________________________ 

*)  the usual approach in systems theory is to make here use of the Hankel matrix H(N) of order N which is constructed  

by the values  A0,A1,A2,….,AM-1  of  the impulse response A. This is possible since by the time invariance of LFSM we 

have always rank h(N) = rank H(N). In the following we will also make use of H(N). 

 

 

 

 

 



3. RISSANEN PQ-DECOMPOSITION OF HANKEL MATRICES  

 

Jorma Rissanen introduced in his important papers [Rissanen 1971] and [Rissanen –Kailath 1972] 

an effective method to decompose recursively step by step a sequence of Hankel matrices 

H(1),H(2),H(3),…which are generated by a associated sequence of  impulse responses  

A(1),A(2),A(3,… of increasing length M(1),M(2),M(3),… If at a step k the Hankel matrix H(K) is 

reached and the associated realization Σk =(Fk,Gk,Hk) is determined,the method of Rissanen allows 

the computation of  H(k+1) and Σk+1 =(Fk+1),Gk+1),Hk+1)) at step k+1 by keeping the results of  

step k. At each step the Rissanen method provides a decomposition of the form H(n,N)=P(n)Q(n,m)  

where H(n,N) consists of  n  linear independent scalar rows of the Hankel matrix H(N) and P(n) is a 

lower triangular scalar matrix of dimension n×n. If rank H(N)=rank H(N+1) the columns of P(n) 

can be taken as basis vectors for the state space Q=Kn of the associated realization. The matrices 

F,G, and H of the realization can be effectively derived from P(n) and Q(n,m). The effectiveness of 

the method of Rissanen for the computation of realizations is crucial for our further discussion, it is 

outside of the scope of this paper to discuss it in greater detail . The reader is at advised to consult 

the existing original publications. For the future a complete algorithmic description and a software 

implementation of the Rissanen algorithmus for applications in the field of cryptanalysis is in 

preparation. 

 

 

4    CRYPTANALYTIC  MEASURES  FOR  STREAM  CIPHER DATA   

 

Stream ciphers are based on pseudo random generators PRG which generate from a initial state x(0) 

(which contains information on the cryptographic key in use) a key sequence S=S(0),S(1),S(2),….. 

In many practical cases of PRG´s the value set of the key sequence S is given by the finite field 

GF(2). However today in modern PRG´s for fast secure data transmission also (GF(2))m and more 

general Km=(GF(q))m is of  interest. In practical applications only a finite part S(M)= 

S(0),S(1),S(2),…,S(M-1) of length M is available for cryptanalysis. The finite string S(M) can have 

been derived from a successful “known plain text attack” or by a “chosen plain text attack” by  

inversion of the mixing operation of the stream cipher system. Also the direct observation of the 

key stream of the PRG is a possibility. For a derived sequence S  there is the cryptanalytic problem 

to determine a possible structure of the PRG and (or) the determination of the used key. By 

technological reasons it can be assumed that the PRG of the stream cipher system can be modelled 

by a autonomous finite state machine AFSM. By assuming a finite state machine model the 



problem of finding the structure of the PRG and (or) the key in use is seen as the problem of 

machine identification and (or) state identification as discussed in section (2.2). 

 

The solution of both problems together with the problem of the determination of the cardinality of 

the state set Q of the ALFSM are seen in cryptanalysis as complexity measures for the key sequence 

S. The measure which computes for a given sequence S the cardinality of the state set Q is known as 

the Chaitin-Kolmogoroff complexity of S. For the general case of autonomous finite state machines 

the implementations of such measures are computational difficult and practical infeasible. However, 

for specific classes of AFSM´s effective methods for the implementations of the measures might be 

derived. One such class is given by the class of autonomous linear finite state machines ALFSM. 

For the case of scalar-valued sequences S=s(0),s(1),s(2),s(3),…  with s(i)∈GF(2) or s(i)∈GF(q) the 

Massey- Berlekamp algorithmus provides an effective method to derive from a finite string S(M) of 

S a autonomous linear feedback shift register ALFSM of minimal length n(M) and an associated 

initial state x(0)  which generates S(M) form state x(0). The function L:N0→N0 which computes for 

a given scalar-valued sequence S  for any string S(M) of it the minimal length n(M) of the realizing 

ALFSM has been called in cryptanalysis the linear complexity profile of S. We see that the Massey-

Berlekamp algorithmus solves for the analysis of scalar stream cipher data the machine 

identification problem, the state identification problem and also the linear complexity problem. 

 

Our goal is, to solve such problems also for the case of vector-valued stream cipher data S. The 

principal approach which we take has been already outlined in chapter 1 of this paper. The technical 

details for it are provided by the content of chapter 2 and chapter 3 of this paper. Therefor we are in 

the position to describe the method, which we will call the “Rissanen algorithmus” by its main steps   

 

Rissanen algorithmus for the computation of cryptanalytic linear measures 

 

Assume that a key sequence S=S(0),S(1),S(2),… has been observed. Then we are able to perform for 

each finite string S(M) of length M the following two steps: 

 

Step 1: we consider  the string S(M)=S(0),S(1),S(2),…,S(M-1) as the impulse response A(M) of a 

LFSM.  The associated impulse response function a as response of a LFSM from the zero state is 

then given by a=0,S(0),S(1),S(2),…,S(M-1). Application of the realization method of chapter 2 gives 

by means of the Hankel matrix H(N) of rank n the associated linear finite state machine Σ  by 

Σ=(F,G,H) with state space Q=Kn . The computation of  Σ  requires that H(N+1) has also rank n. 



 

Step 2: we consider now the given string S(M)= S(0),S(1),S(2),…,S(M-1) of the key sequence S as the 

output word of the autonomous  linear finite state machine ALFSM=(F,H) with initial state x(0) 

which is given by x(0)=Ge where e is the (scalar) unit impulse input function given by e(0)=1 and 

e(t)=0 for t>0. 

 

Increasing recursively the length M of the key sequence S  for M=1,2,3,4,…we reach by step 1 the 

associated Hankel matrices H(1),H(2),H(3),… and the associated LFSM´s  Σ(1), Σ(2), Σ(3),…and  

the associated sequence n(1), n(2), n(3),…indicating the dimension of the associated state spaces 

Q(1), Q(2), Q(3),….. By increasing the length M of the key string  S(M)  and  having the results of 

step 1 we determine by step 2 the associated autonomous linear finite state machines  

(F(1),G(1)), (F(2),G(2)), (F(3),G(3)), … and the associated initial states x(1)(0), x(2)(0), x(3)(0),…. 

To have an effective method for the stepwise computation of the realizations Σ(1), Σ(2), Σ(3),…the 

Rissanen method  for establishing a  PQ-decomposition of Hankel matrices of chapter 3 has to be 

applied. 

 

The Rissanen algorithmus, which is described above, allows for even very large observed key 

streams the effective computation of  linear cryptanalytic measures, such as given by linear state 

machine identification, initial state identification and determination of the linear complexity. Since 

the key streams are allowed to have values in the linear space Km  with m≥1 the Rissanen 

algorithmus generalizes the cryptanalytic methods provided by the Massey- Berlekamp 

algorithmus. 

 

5   CONCLUDING REMARKS  

 

The paper presents with the Rissanen algorithmus a new method for taking linear measures of  

vector-valued data as they appear in stream ciphering. The theoretical basis for this method is 

provided by the theory of linear system realization as developed as part of  mathematical systems 

theory by Rudolf Kalman. For the practical application in the context of  cryptanalyis the Rissanen 

method for recursive identification of linear systems has been proven as essential. 

 

The result of this paper generalizes the method of linearization as developed by Massey and 

Berlekamp which was originally developed in the theory of BCH-codes [Massey 1967],[Berlekamp 

1968]. Jonckheere and Ma investigated the Massey-Berlekamp algorithmus from the point of view 



of  linear systems realization but did not deal with the possible more general case of our paper 

[Jonckheere-Ma 1989].Our presentation made use of the existing classical theory of linear finite 

state machine . A deeper structural knowledge about realizations could be achieved by taking the R-

module approach in the theory of algebraic linear systems as developed by Kalman . A further goal 

of research could be the investigation of a possible direct effective computation of  realizations such 

that the structure of  Σ=(F,G,H) becomes a parallel coupling of linear feedback shift registers. The 

matrix F is then of rational canonical form. We hope that our paper can show that the results of 

mathematical systems theory, as developed mainly in the 60´s of the last century, have until today 

some importance for practical applications in modern topics of engineering. 
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