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The theory of Walsh functions goes back to the original paper of Walsh(1923). This was followed by contributions of Paley, Fine and others in pure mathematics. After WWII interest in communication engineering and signal processing arose and research, mainly in the USA-there at Jet Propulsion Laboratory in Pasadena but also at companies and universities was done. From 1970 on regularly conferences first at the Naval Research Laboratory in Washington D.C., were started, with H.Harmuth as its main speaker. It is most likely that at this time the importance of Walsh functions for the characterization of boolean function as they are applied in cryptography was already known to different organisations but was kept confidential.

1. Walsh Functions : General overview on the theory

Walsh functions have become important for the analysis of boolean functions by their 

application in cryptography in combiners and also in S-boxes. Their mathematical theory is

highly developed.They are character functions of a specific abelian group, the dyadic group and 

the related theory is a special case of the theory characters and of the field of abstract harmonic 

analysis (see for example the book of Rudin or Hewitt-Ross). The case we are dealing with is 

given by the finite dyadic group D(n) which is the n-fold direct product of the cyclic group Z2. 

In this case the theory becomes a part of linear algebra.
The dyadic group D(n) is definied by D(n):=(Bn,(), its elements x =(x0,x1,...,xn-1) are        
boolean n-tupels, the addition x(y of the elements x and y is coordinate-wise done.                         A boolean function f is defined by a function f from  Bn to B.
Let Z(n) denote the set Z(n):={0,1,...,2n-1}.There exists a one to one correspondence between Z(n) and D(n) by the function bin with bin(x0+x12+...+xn-12n-1):=(x0,x1,...,xn-1)
For elements t from Z(n) we use often the notation t=(t0,t1,...,tn-1) and extend the xor  operation ( also to Z(n).                                      
    Walsh Functions w(s,.) are usually defined as real-valued functions w(s,.):Z(n)(R by
w(s,t)=(-1)<s,t>     s(Z(n) where <s,t> denotes the inner product  s0t0+s1t1+...+sn-1tn-1 of s with t.
Walsh Functions w(s,.) take only values +1 and –1. The Walsh Transform  F^ of a function F:Z(n)(R is defined by F^(s):= (t F(t)w(s,t).      
The inverse Walsh Transform of F^ is given by  F(t) = 1/2n(sF^(s)w(s,t). Let F,G denote functions from Z(n) to R. The dyadic convolution product F*G is defined as the function
F*G(t):= (a F(t(a)G(a).     
For dyadic convolution the following theorem is valid (F*G)^ = F^.G^ (dyadic convolution theorem) . For F*G=E  (E the function E(0)=1, E(t)=0 else) it follows F=E
Let Fa denote the a-dyadic shifted function Fa(t):=F(t(a). The following dyadic shifting theorem is easy to prove  Fa^ = w(a,.)F^. From the formula for the Walsh Transform of a function F  we get for F^(0) the value   F^(0)= (t F(t) and from the formula for the inverse Walsh Transform F(0) =1/2n (s F^(s).

*) Remark: This paper is a part of a lecture series of the author on Cryptology and is addressed to Non-specialists in the field of Walsh functions. Additional citations may be found in the LNCS publications of the EUROCRYPT and CRYPTO Conferences.**)Lecture presented at the Workshop on “Dyadic Differentiation and Dyadic Analysis”, Faculty of  Electronics University of Nis^, Serbia (organized by Radomir Stankovic), October 2007

The dyadic cross correlation function DCC(F,G) of functions F and G is defined by
DCC(F,G)(a):=(t F(t (a)G(t). The dyadic auto correlation function DAC(F) of a function F is defined by  DAC(F)(a) :=(t F(t (a)F(t). For the DAC of a function F the following theorem it can be shown that DAC(F)^ = F2    (Theorem if Wiener-Chintchin).

Of specific interest are functions F which take (as the Walsh Functions ) only values +1 and –1 on Z(n). The following theorem characterizes such functions by spectral properties
Theorem: a function F is  a „+1/-1 function“ if and only if the following equation is valid
F^*F^ =2n E. A interesting theorem is the following :Let F be a polynomial of degree m<n . Then F^(s)=0 for all s with  //s//H >m  ( //s//H denotes the Hamming weight of s) ( Theorem of Liedl ).

2.  Walsh Fourier analysis of boolean functions

Applications of the theory of Walsh functions in the field of cryptology deal mainly with boolean functions f:Bn(B. Any such function f has corresponding function  +1/-1 function F which is given by F(t)= (-1)f(x)   where x = bin(t). In the following F has always this meaning.The Walsh Transform f^ of a boolean function f is defined in the following way  f^(y) := (x(-1)f(x)(-1)<y,x>     or since  f(x)+<y,x>(mod2)=f(x)(<y,x>  we have also f^(y)= (x(-1)f(x)(<y,x> . It is to observe that the Walsh Transform f^ of a Boolean function f  is  real-valued.
The dyadic autocorrelation and the dyadic cross correlation of a boolean function f is defined by the DAC and DCC of the asssociated +1/-1 function F: DAC(f):=DAC(F)  and  DCC(f):=DCC(F). The following results for boolean functions f are valid:
DAC(f)(0)=2n  and  //f  ( fa //H = 1/2 - 1/2n+1 DAC(f)(a). It can be obseverd that for a=0 as expected //f ( f//H = 0 . Furthermore that the Hamming distance of f and fa for  a≠0  is close to ½  if DAC(f)(a) is small. This is the case for the boolean functions f:D(2n-1)(B which are generated by a maximum length linear feedback shift register MLFSR of length n (pseudo random code-words).

A main application of the Walsh Transform of  in Cryptology is given by the spectral characterization of  boolean functions .

A boolean function f on D(n) is called balanced if card{x:f(x)=0}=card{x:f(x)=1}=2n/2 . We have the „theorem“: f is balanced if  f^(0)= 2n/2. A boolean function f satisfies by definition the propagation criteria with respect to a ε D(n) if  f ( fa is balanced . Here fa denotes the dyadic a-shift of f which is given by fa(x):=f(x ( a). A boolean function f satisifies by definition the propagation criteria of degree k if it satisfies the propagation criteria for all a ε D(n) with

 0< //a//H =k. In case of  k=1 we say that f satisfies the Strict Avalanche Criteria ( SAC). The following theorem can be proven for the SAC of a boolean function f :
Theorem(Forre CRYPTO 88): f satisfies the Strict Avalanche Criteria if
(sf^2(s)(-1)si =0   for all i  with 1 ( i ( n
The distance d(f,g) between two boolean function f and g is given by  d(f,g) = //f ( g//H .
Linear boolean functions l(y) are of the form l(y)(x)=<y,x>  or l(y)=1(<y,x>. A dgree of non-linearity of a boolean function f can be measured by its distance to a linear Boolean function.  The following theorem allows to express the distance of a boolea function f  to the linear functions l(y) by means of its spectrum:
Theorem: d(f,l(y))=1/2(2nf^(y))

In stream cipher architectures the analysis of the boolean function which realizes a static combiner is of specific importance. To block correlation attacks to investigate the used secret key a sufficient degree m of correlation immunity of such a function is required. In this respect the following definition is introduced: A boolean function f is called to be correlation immune of order m if f(x1,x2,...,xn) is statistically independent from  every k-tupel (xi1,xi2,...,xik), where k<m+1, when considered as independent uniformly distributed binary random variables of stochastic processes Xi1,Xi2,...,Xin. For the characterization of a boolean function with respect to its correlation immunity the following theorem is of importance.
Theorem(Massey-Xiao): f is correlation immune of order m if and only of f^(y)=0 for all y with //y//H  ≦m, where  //y//H  denotes the Hamming weight of y.

In the terminology of Walsh Fourier analysis this means, that a boolean function f which is correlation immune of order m contains in its Walsh Fourier representation only Walsh functions, which are a product of more than m Rademacher functions.The related Walsh Fourier spectrum f^can therefore be considered as a nonlinear function which compares to polynomials of higher degree than m.

3. Design of Boolean function combiners

The determination of a Boolean function which meets the necessary requirements is an important mathematical task in the cryptography of stream ciphers. We explore in the following some properties , which have some relevance.

If  x1,x2,x3,...,xn  denotes the pseudo random streams received by the combiner C, then the resulting output stream y of the combiner C(x1,x2,x3,...,xn) should be  „cryptological improved“ compared to the invidual input streams xi (i=1,2,3,...,n)

A combiner C must not „leak“ ( should have a strong one way property to make cryptanaysis difficult)

The design of combiners for strong pseudo random generators used in cryptography is usually a part of a trade secret of companies. However there are a number of published results which can give an orientation. Most of publications deal with static combiners, based on boolean functions, only a few results are known for dynamic combiner.

A boolean combiner can be realized by a properly chosen boolean function C from Bn  to  B:= {0,1}. Boolean combiner can be represented either by a table or by a boolean expression.Usually it is to assume that C is given by its Algebraic Normal Form ANF(C).

One of the most important requirements in the design of boolean combiners concerns the  

degree of correlation immunity I (C) to avoid leaking with respect to the correlation attack

(described by Siegenthaler and Golic)  I(C) can be determined by spectral properties of the

Walsh Fourier Transform WFT(C) of C.A sufficient degree I(C) needs a certain degree of 

nonlinearity of the discrete polynom associated to C. The results, which are already described

in chapter 2 were derived by the work of Xiao and Massey. It is possible to construct a sufficient

 large number of correlation immune boolean functions for any desired degree m.

F. Pichler: On the Walsh Fourier Analysis of correlation immune switching functions, Eurocrypt 86, Linköping, Sweden (published in LNCS proceedings)

Other results which are derived by Siegenthaler are based on repeated algebraic computations. 

If the required degree I(C) of correlation immunity of a combiner C is given, then the following recipe for the construction of a  combiner C with degree I(C) = m can be applied:

    (1) define C  by C(x1,x2,...,xn) := x1(x2(...+(xm(g(xm+1,...,xn) 

   with a boolean function g:Bn-m(B. 

    (2) chose g  such that the additional required properties of C are fulfilled.

In the following we explore some additional features and their spectral representation by 

Walsh-Fourier representations which are used in combiner design. In doing this   
we have to distinguish between static combiners represented by boolean functions ( Boolean function combiner) and dynamic combiners (FSM combiners,also called in cryptography „combiners with memory“) representated by finite state machines.
In both cases it is the goal to derive from observed output bits y(0)y(1)y(2),...y(k),....of the combiner C some knowledge about the input streams x1,x2,...,xn and the „machines“ (specifically their initial states) M1,M2,...,Mn which generate it. To get such a  useful  knowledge  for the mounting of an attack this should be computational hard. In the case of dynamic combiners our consideration is restricted to finite state machines which are finite memory machines. In this case the problem of the design of a dynamic combiner can be reduced to the design of a Boolean function combiner
Boolean function combiners are designed by a switching functions f such that 
(1) the solution of  the system of equations
     f(x(i))=y(i)    i=0,1,2,...,k;   x(i)=(x1(i),x2(i),...,xn(i)) is  computational hard
(2) a correlation analysis between the output stream y and the individual input streams xi (i=1,2,...,n) shows no results regardless of the length of the applied streams y and xi
(1) asks for the use of highly nonlinear functions f 
(2) in contradiction however,to meet correlation immunity requirements a certain linear component of  f is required.
 Different ways to represent switching functions f are known: 

(1) by the disjunctive form  DF                                                    

(2) by the conjunctive form CF                                                    

(3) by the algebraic normal form ANF  (a multivariate polynomial)
In cryptanalysis it is for algebraic reasons often desirable to use the ANF of a boolean function f which is given by
    ANF(f):=a1x1+a2x2+...+anxn +a12x1x2+a13x1x3+ ...+an-1nxn-1n + a123x1x2x3 +a124x1x2x4+ ...+...+a1234..nx1x2...xn  
there exist methods to compute DF,CF and ANF from any each other.

In Cryptology the following criteria are considered as useful in the design and analysis of boolean combiners and boolean networks („S-boxes“)                                                                        

(1) balance                                                                        

(2)   nonlinear order                                                              
(3)   correlation immunity                                                   
(4)   bentness                                                                       
(5)   distance to linear structures                                         
(6) strict avalanche criterion                                                      

(7) propagation characteristic                                                  

(8) global avalanche criterion

The criteria (1)-(8) can be defined as shown in the following. Also their characterization, if possible, in the spectral domain is given:

A Boolean function f is called balanced if  card{x:f(x)=1}=card{x:f(x)=0}.
The nonlinear order of  f  is defined by the maximal numbers of variables which appear in the ANF(f)
f is called to be correlation-immune of order m if the value of f is statistically independent from any m-tupel (xi1,xi2,...,xim) (compare with a more detailed definition in chapter 2 of this paper)
These properties can be characterized by the Walsh-Fourier spectrum f ^of  f in the 

following way:
Theorem: f is balanced ( f^(0)=0
Theorem: f is correlation immune of order m ( f^(w)=0 for all w with  the Hamming weight //w//( m
A boolean function f is said to satisfy the strict avalanche criterion (SAC) if
Pr{f(x)(f(x(a)=1}= ½    for //a//=1
A boolean function f satisfies the propagation characteristic (PC) of degree k  if
Pr{f(x)(f(x(a)=1}= ½    for 1( //a// (k
Remark:perfect nonlinearity requires a PC of degree n
The global avalanche criterion GAC of a boolean function f  can be characterized by the 

dyadic autocorrelation function DAC(f) of f which is given by DAC(f)(a):= (x F(x)F(x(a)
A „good“ GAC means that  DAC(f ) is close to zero for almost all nonzero values of a and for a=0 we should have DAC(f) (0)=2n .The Walsh-Fourier transform WFT(DAC(f )) is according to the Wiener-Chintchin theorem the Walsh Power Spectrum P(f) of the boolean function f. For functions f with good GAC the related P(f) is almost constant ( has a „white noise“ characteristic)
bent functions are boolean functions f which satisfy the propagation characteristic PC by degree n . For bent functions the following theorem is valid:Theorem:A boolean function f is a bent function if the modulus of f^ (f^ the Walsh transform of  f) is constant with (f^(w) (=2n/2    for all w(GF(2)n. Satisfying the criteria (1)-(8) may lead to conflicts. Such are as follows:

    (a) usually it is required that C is balanced, so it can not be a bent function
    (b) bent functions does not exist if n is odd
    (c) high linear order means low degree of correlation immunity.

To avoid a  tradeoff of the kind (c) it can be suggested to use static combiners C of the form
C=x1(x2(x3(...(xm(C´(xm+1,xm+2,...,xn)  which is of  correlation immunity of degree m.

 To meet additional criteria the Boolean function C´ has to be designed accordingly.

4. Finite Memory FSM combiners

For special cases of finite state machines  the design of dynamic combiners can be reduced to the design of a static (boolean) combiner. One class is given by finite state machines which possess the „finite memory property“. Such finite state machines are called Finite Memory Machines (FMM). This leads to the concept of a Finite Memory FSM combiner(FMM combiner)

paper: Franz Pichler:Konstruktion korrelationsimmuner Schaltfunktionen und Schaltwerke 

mittels Walsh-Fourieranalyse,Contributions to General Algebra 6,Teubner Stuttgart 1988 (in 

german). In the following the main results for the design of FMM-combiners are stated.

Definition: A finite state machine FSM has a finite memory of degree ì if any simple experiment (w,v) observed  on FSM determines uniquely the reached state q  as soon as the length of the experiment is equal to ì or is larger than ì, length (w ,v)= ì  or  length (w,v)> ì

There exist efficient algorithms to determine if a given FSM is a finite memory machine FMM  and also to determine the degree ì.  If a FSM is a FMM then  there is the possibility to compute the associated canonical shift register representation, which contains two feed-forward registers for the input and the output together with the boolean output function f(FMM).

In a FMM state transition is reduced to simple shift operation.

The following procedure for constructing a FMM combiner is suggested:

  (1)  feed the input streams x1,x2,...,xn  to associated feed-forward shift register R1,R2,...,Rn of lengths m1,m2,..,mn

  (2)  feed the output stream y to a feed-forward shift register R of length m

  (3)  take all register states as inputs of the output function f(FMM)

The resulting FMM has a finite memory of degree  ì= max(m1,m2,...,mn,m).

The following steps can use the methods for the cryptographic design of the boolean function f(FMM) with the cryptanalytic methods known for boolean function combiners.To camouflage the design the change of the state coordinates of the FMM is recommended to change by state assignment the states such that the FMM canonical form disappears so that, after implementation, it is not immediately recognized as a FMM combiner on hardware blueprints.
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