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1. Introduction

Prigogine and his research group investigated in several books and papers the possibility for the construction of highly-unstable non-conservative discrete time deterministic dynamical systems which model locally by its states and state transition microscopic mechanism and generate globally compley state patterns, such as chaotic attractors, which have relevance to observed behaviours of complex systems as they appear in different fields of science. Such an approach should supplement the existing methods, based on stochastic processes and statistical mechanics methods.

In this paper we follow Prigogine in such a construction and elaborate an example which is given in the books [Prigogine 1980] and [Nicolis-Prigogine 1989]. However, we use in our example. the existing theory of Walsh harmonic analysis and the theory of dyadic derivates as introduced by Edmund Gibbs [Gibbs 1969]. The (-transform of Prigogine is identified by us as a dyadic convolution operation and is introduced by the dyadic derivative operator G. The topic which we discuss here was already followed by the author in an earlier report [Pichler 1992] and independently by the paper [Creutzburg et al 1994]. In [Pichler 2000] a similar example using as state space the Hilbert space of square integrable real functions was given. The topic of this paper here was also covered in the lecture “On the role of Walsh Functions for certain dynamacal systems” at the workshop “Dyadic Analysis with Applications and Generalizations”, 2003 June 11-13, Balatonszemes, Hungary, organized by Ferenc Schipp.

2. Baker transform and its dyadic representation

Let by E denote the unit square E:[0,1)([0,1). The baker transform B can be defined by the mapping

                      (2x,½y)             for  0 ≤ x <½
B(x,y):=                                                                                                             (1)

                      (2x-1, ½(y+1)   for ½ ≤ x < 1

where (x,y)εE. The baker transform B is invertible. For its inverse B-1 we get

                      (½x,2y)          for  0 ≤ y <½
B-1(x,y):=                                                                                                                                                                (2)

                                 (½x+1,2y-1)   for  ½ ≤ y < 1
The baker transform moves the points (x,y)εE  in the following manner: The left half of E is folded to its half size and stretched to full length such that it becomes the lower half of E. The right half of E becomes by B the upper half of E. Iteration of B mixes the points of E dramatically such that two points (x,y) and (x´,y´) which are close to each other get a far distance.
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The operation of B, however, becomes very simple if we represent E by its associated dyadic Group D. To show this let denote by x(i), i=1,2,…. and by y(j), j=1,2,… the coefficients of the dyadic representation of x and y, respectively. Then the infinite vectors (x(1),x(2),…)  and (y(1),y(2),…) can be concatenated to form the both-sided infinite vector  (…y(2),y(1);x(1),x(2),…) which is the associated element of (x,y) in the dyadic group D. It is straightforward to see, that the baker transform B degenerates on D to a simple shift-operation. The value B(x,y) is associated in D to

(…y(2);y(1),x(1),x(2),…) which is derived by 1-step right shift of (…y(2),y(1);x(1),x(2),…). It is evident, that by this property of B with respect to its representation on the dyadic group D the Walsh functions, being group characters of D will have a specific role in the analysis of B.

3. Baker-dynamical systems

We use in the following the baker transform, to define the state transition function for a autonomous discrete time dynamical system, which we will call baker-dynamical system. Let L2(E) denote the Hilbert space of square-integrable real functions defined on E. Let B* denote the iteration of E of arbitrary length. Then the pair (L2(E),B*) is called a baker dynamical system. L2(E)  constitutes the state space and B* the (global) state transition function. B is  the next state transition function. Since B is measure preserving and also invertible, a baker dynamical system is conservative and reversible, that means that we have for all states qεL2(E) the following equations

 ║B*(q)║2 =║ q ║ 2        and   (B-1)*B*(q) = q                                                            (3)

4. Walsh-Fourier analysis of baker- dynamical systems

Let  ψ(n), n =0,1,2,…  denote the Walsh-Paley functions. The 2-D Walsh functions ψ(h,v),           h,v =0,1,2,… are defined by the product

ψ(h,v) := ψ(h) ψ(v)          h,v =0,1,2,…                                                                     (4)

Each Walsh function  ψ(h,v) is a real function on E with values ψ(h,v)(x,y)= ψ(h)(x) ψ(v)(y) with (x,y)εE. The system { ψ(h,v): h,v=0,1,2,…} of 2-D Walsh functions is known to constitute a complete orthonormal function system for the Hilbert space L2(E). Each Walsh function can therefore be considered also as a state of the baker-dynamical system (L2(E),B*) and each state q can be represented by a Walsh-Fourier series of the form
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By using (5) the next state B(q) can be computed by
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It has been shown in  [Pichler 1992] that the set of Walsh functions   ψ(h,v)  is closed under the baker transform B and we have  

                         Ψ (2h, ½v)               if v is even

Bψ(h,v)  =                                                                                                                  (7)

                        Ψ (2h+1, ½(v-1)       if v is odd

By the result of (7) we can compute B(q) of (6) now as
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                             (8)

By substituting h*:=2h  and v*:=v/2  if v is even, and h*:=2h+1  and v*:= (v-1)/2  if v is odd we are able to write (8) as
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If we define the function B^ on the Hilbert space  L2(N0×N0), where N0 denotes the set of Numbers 0,1,2,… by  

                  q^(h/2,2v)                     if  h is even

B^(q^):=                                                                                                                               (10)

                 q^((h-1)/2,2v+1)       if  h is odd

we are able to write (9) as
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The operation B^ on L2(N0×N0), which is given by

                  (h/2,2v)                     if  h is even

B^(h,v):=                                                                                                                               (12)

               ((h-1)/2,2v+1)         if  h is odd

can be called the discrete baker transform.

The result (11) shows that whenever a state q is mapped by the baker transform B to a next state B(q) the related Walsh-Fourier spectrum q^of q is mapped by the discrete baker transform B^ to B^(q^).There are several invariants to observe in a baker-dynamical system (L2(E),B*). First it is to observe by (8) that the baker transform preserves for all states q of (L2(E),B*) the multiplicity V(q) as  defined by [Liedl 1968]. In addition by the validity of the Parseval theorem we have

║B(q)║2 =║ q ║ 2  =  ║q^║2 =║ B^(q^) ║ 2                                                                            (13)

5. Construction of a Λ- transform in the sense of Prigogine

In the following we construct by means of the dyadic derivative as introduced by Edmund Gibbs a specific transform for the states q of (L2(E),B*) which is in line with the concept of the Λ-transform as introduced by the work of Prigogine. We follow here the presentation which is given in chapter V of the book  [Nicolis-Prigogine 1989]. A basic concept is there the T-operator of Misra [Misra et al 1979] which can be defined in our context as an operator which has the Walsh functions ψ(h,v) as its eigenfunctions

T ψ(h,v):= τ(h,v) ψ(h,v)                                                                                              (14)

Each eigenvalue τ(h,v)can be called according to Misra the “dyadic time” of ψ(h,v) . From this definition we can conclude that a T-operator is a dyadic convolution operator. There are off course many ways to define convolution operators. One of it, which seems to be in line with the original ideas of Misra can be constructed by taking τ(h,v): =h+v . To meet this case we can define T  by the use of the following (strong) Gibbs differential operator G for  functions of  f ε L2(E) which can be defined by
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 lim(n→∞) G(n)/dx f(x,y)  +  lim(n→∞) G(n)/dy f(x,y)                           (15)

where the operations  G(n)/dx  and  G(n)/dy are defined by

G(n)/dx:=
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and by   

G(n)/dy:=
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It can be shown that G as defined by (15) meets the desired requirements for a T-operator and we have 

Gψ(h,v) = (h+v)ψ(h,v)                                                                                              (18)

In addition G fulfills with respect to the baker transform the requirement of non-commutativity, that means that

GB ≠ BG                                                                                                                   (19)

This is most easy to show for taking Walsh functions as arguments. For GB ψ(h,v) we get

(h*+v*) ψ(h*,v*)   with h* and v*  given according to (7), for  BG ψ(h,v) however we have

(h+v) ψ(h*,v*). Since h*+v* ≠ h+v we conclude that  (19) holds.

The next step is to make use of G to construct a Λ-transform. Prigogine shows in his work (see for example [Nicolis-Progogine 1989]) that Λ  can be constructed by the Misra T-operator in the following way: Chose the Walsh-Fourier spectrum Λ^ of Λ such that it is a monotonic decreasing function of T^. In our case, since we have T^= G^  which is given by G^(h,v)=h+v  a Λ-operator can be defined by  Λ^(h,v):=1/(h+v). However, this is exactly the inversion of the Gibbs differential operator G in the spectral domain, which means that we can consider in our case the Λ-operator as being equivalent to the dyadic integral operator Σ which is the inverse of G.

6. Construction of a baker-Prigogine dynamical system by Gibbs differentiation

Following again [Nicolis-Prigogine 1989] the dyanamical system (L2(E),Γ*) is defined by 

Γ:=ΛB                                                                                                                       (20)

We call (L2(E),Γ*) a Gibbs-baker-dynamical system, for short a GbP-dynamical system.

Our goal is to show in the following, that a GbP-dynamical system meets the requirements of being a dissipative dynamical system. This means that it has a non-conservative dynamics in the sense that the realization of its state trajectories consume energy and that in addition the global state transition function  Γ* performs a strong mixing operation on the states. This is, however guaranteed by the  baker transform B as a factor of  Γ . To prove that  Γ* generates a non-conservative dynamics it is sufficient to show that for all states q ε L2(E) the following inequality

holds

║Γ(q)║2 < ║ q ║ 2                                                                                                          (21)

By the Parseval equation the inequality (21) is equivalent to the inequality

║Γ^(q^)║2 < ║ q^ ║ 2                                                                                                      (22)

Computation of the left side of (22) gives

                                                                        Λ^q^(h/2,2v)            if  h is even
Γ^(q^(h,v))= Λ^B^q^(h,v) = Λ^q^(B^(h,v))=
                                                                       Λ^q^((h-1)/2,2v+1)  if  h is odd

by substituting h*:=h/2  and v*:=2v we can write

                         Λ^(2h,v/2)q^(h,v)                if v is even
Γ^(q^(h,v))=                                                                                                               (23)

                        Λ^(2h+1,(v-1)/2)q^(h,v)     if v is odd

The result of (23) allows us to evaluate the correctness of the inequality (22). We have to distinguish the following two cases:

Case 1: v is even

In this case we have

║Γ^(q^(h,v))║2 - ║ q^(h,v) ║ 2   =  ║ Λ^(2h,v/2)q^(h,v) ║2 -║ q^(h,v) ║ 2   

                                                    =║ Λ^(2h,v/2) ║2║ q^(h,v) ║ 2 -║ q^(h,v) ║ 2   

                                                    = (║ Λ^(2h,v/2) ║2 – 1)║ q^(h,v) ║ 2                      (24)

since ║ Λ^(2h,v/2) ║2 = 1/(2h+v/2)2 < 1   as soon as  h>0   the expression (24) has a negative value which proves that the  GbB-dynamical system is non-conservative.

Case 2: v is odd

Here we have

║Γ^(q^(h,v))║2 - ║ q^(h,v) ║ 2   =  ║ Λ^(2h+1,(v-1)/2)q^(h,v) ║2 -║ q^(h,v) ║ 2  

                                                                           =║ Λ^(2h+1,(v-1)/2) ║2║ q^(h,v) ║ 2 -║ q^(h,v) ║ 2   

                                                    = (║ Λ^(2h+1,(v-1)/2) ║2 – 1)║ q^(h,v) ║ 2           (25)

and    ║ Λ^(2h+1,(v-1)/2) ║2  = 1/((2h+1)+(v-1)/2)2 < 1  as soon as  h>0 .Therefore we can make the same conclusion as in Case 1.

The condition h>0  in our proof of above limits our construction of  a dissipative dynamical systems to initial states q for which q(.,y) is for any y not constant, which is equivalent of saying that  q^(h,v) = 0 for h=0. This requirement does however not limit the functionality of our construction.

7 Conclusion

We have shown that  the Gibbs differential operator G allows the construction of a Λ- transform in the sense of Prigogine. Together with the baker transform B we can define with Λ  the state transition function  Γ:=ΛB of an autonomous discrete time dissipative dynamical system with an infinite-dimensional state space which is given the Hilbert space L2(E). For the investigation of this dynamical system Walsh harmonic analysis can successfully be applied. It was not to expect that the reached dynamical system shows any practical application in the physical sciences. However it can serve as an example to give directions for possible further research which might come closer to results which have a practical interpretation. This means that other types of non-linear state transition function, which have the mixing property, together with suitable T-operators in the sense of Misra and related Λ- transforms have to studied to define such dynamical system which have a dissipative behaviour.
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